首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1400篇
  免费   116篇
  国内免费   1篇
  2023年   9篇
  2022年   19篇
  2021年   49篇
  2020年   12篇
  2019年   30篇
  2018年   27篇
  2017年   14篇
  2016年   37篇
  2015年   82篇
  2014年   84篇
  2013年   81篇
  2012年   128篇
  2011年   116篇
  2010年   59篇
  2009年   43篇
  2008年   88篇
  2007年   83篇
  2006年   70篇
  2005年   70篇
  2004年   54篇
  2003年   57篇
  2002年   60篇
  2001年   11篇
  2000年   9篇
  1999年   17篇
  1998年   12篇
  1997年   10篇
  1996年   9篇
  1995年   7篇
  1993年   5篇
  1992年   14篇
  1991年   11篇
  1990年   6篇
  1988年   7篇
  1985年   5篇
  1984年   9篇
  1982年   9篇
  1981年   5篇
  1980年   6篇
  1979年   7篇
  1978年   4篇
  1976年   6篇
  1975年   6篇
  1974年   3篇
  1973年   3篇
  1971年   3篇
  1970年   6篇
  1969年   3篇
  1967年   4篇
  1929年   3篇
排序方式: 共有1517条查询结果,搜索用时 31 毫秒
51.
52.

Background

Human RNase6 is a small cationic antimicrobial protein that belongs to the vertebrate RNaseA superfamily. All members share a common catalytic mechanism, which involves a conserved catalytic triad, constituted by two histidines and a lysine (His15/His122/Lys38 in RNase6 corresponding to His12/His119/Lys41 in RNaseA). Recently, our first crystal structure of human RNase6 identified an additional His pair (His36/His39) and suggested the presence of a secondary active site.

Methods

In this work we have explored RNase6 and RNaseA subsite architecture by X-ray crystallography, site-directed mutagenesis and kinetic characterization.

Results

The analysis of two novel crystal structures of RNase6 in complex with phosphate anions at atomic resolution locates a total of nine binding sites and reveals the contribution of Lys87 to phosphate-binding at the secondary active center. Contribution of the second catalytic triad residues to the enzyme activity is confirmed by mutagenesis. RNase6 catalytic site architecture has been compared with an RNaseA engineered variant where a phosphate-binding subsite is converted into a secondary catalytic center (RNaseA-K7H/R10H).

Conclusions

We have identified the residues that participate in RNase6 second catalytic triad (His36/His39/Lys87) and secondary phosphate-binding sites. To note, residues His39 and Lys87 are unique within higher primates. The RNaseA/RNase6 side-by-side comparison correlates the presence of a dual active site in RNase6 with a favored endonuclease-type cleavage pattern.

General significance

An RNase dual catalytic and extended binding site arrangement facilitates the cleavage of polymeric substrates. This is the first report of the presence of two catalytic centers in a single monomer within the RNaseA superfamily.  相似文献   
53.
Bone metastases occur in 65% to 75% of patients with advanced breast cancer and significantly worsen their survival and quality of life. We previously showed that conditioned medium (CM) from osteocytes stimulated with oscillatory fluid flow, mimicking bone mechanical loading during routine physical activities, reduced the transendothelial migration of breast cancer cells. Endothelial cells are situated at an ideal location to mediate signals between osteocytes in the bone matrix and metastasizing cancer cells in the blood vessels. In this study, we investigated the specific effects of flow-stimulated osteocytes on the interaction between endothelial cells and breast cancer cells in vitro. We observed that CM from flow-stimulated osteocytes reduced endothelial permeability by 15% and breast cancer cell adhesion onto endothelial monolayers by 18%. The difference in adhesion was abolished with anti-intercellular adhesion molecule 1 (ICAM-1) neutralizing antibodies. Furthermore, CM from endothelial cells conditioned in CM from flow-stimulated osteocytes significantly altered the gene expression in bone-metastatic breast cancer cells, as shown by RNA sequencing. Specifically, breast cancer cell expression of matrix metallopeptidase 9 (MMP-9) was downregulated by 62%, and frizzled-4 (FZD4) by 61%, when the osteocytes were stimulated with flow. The invasion of these breast cancer cells across Matrigel was also reduced by 47%, and this difference was abolished by MMP-9 inhibitors. In conclusion, we demonstrated that flow-stimulated osteocytes downregulate the bone-metastatic potential of breast cancer cells by signaling through endothelial cells. This provides insights into the capability of bone mechanical regulation in preventing bone metastases; and may assist in prescribing exercise or bone-loading regimens to patients with breast cancers.  相似文献   
54.
m6A methylation is the most abundant and reversible chemical modification on mRNA with approximately one-fourth of eukaryotic mRNAs harboring at least one m6A-modified base. The recruitment of the mRNA m6A methyltransferase writer complex to phase-separated nuclear speckles is likely to be crucial in its regulation; however, control over the activity of the complex remains unclear. Supported by our observation that a core catalytic subunit of the methyltransferase complex, METTL3, is endogenously colocalized within nuclear speckles as well as in noncolocalized puncta, we tracked the components of the complex with a Cry2-METTL3 fusion construct to disentangle key domains and interactions necessary for the phase separation of METTL3. METTL3 is capable of self-interaction and likely provides the multivalency to drive condensation. Condensates in cells necessarily contain myriad components, each with partition coefficients that establish an entropic barrier that can regulate entry into the condensate. In this regard, we found that, in contrast to the constitutive binding of METTL14 to METTL3 in both the diffuse and the dense phase, WTAP only interacts with METTL3 in dense phase and thereby distinguishes METTL3/METTL14 single complexes in the dilute phase from METTL3/METTL14 multicomponent condensates. Finally, control over METTL3/METTL14 condensation is determined by its small molecule cofactor, S-adenosylmethionine (SAM), which regulates conformations of two gate loops, and some cancer-associated mutations near gate loops can impair METTL3 condensation. Therefore, the link between SAM binding and the control of writer complex phase state suggests that the regulation of its phase state is a potentially critical facet of its functional regulation.

Approximately one-fourth of eukaryotic mRNAs harbor at least one m6A-modified base, but how is this regulated? This study shows that cells can use liquid-liquid phase separation to regulate dynamic assembly of the mRNA m6A methyltransferase complex (METTL3/METTL14/WTAP), with stoichiometries that depend on condensate partitioning in a substrate binding-dependent manner.  相似文献   
55.
56.
It was previously reported that dispersed bovine placentome secretes progesterone and that the steroidogenic activity of these cells is stimulated by a calcium-mediated, cyclic nucleotide independent mechanism. In the present study, the influence of substrate availability was explored and the roles of calmodulin and protein kinase C in progestin production examined. Incubation of dispersed fetal cotyledon cells with 25-hydroxycholesterol (25-OH-C), a soluble sterol which readily enters cells and is metabolized to steroid hormones, increased progesterone secretion in a dose-dependent manner. The response to 25-OH-C was dependent on the extracellular calcium concentration. Methyl isobutyl xanthine (MIX) alone also increased pregnenolone as well as progesterone secretion, and the combination of 25-OH-C and MIX stimulated progesterone secretion was inhibited by trifluoperazine. The phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), caused no major effects on steroidogenesis but the stimulatory effects of MIX or the ionophore A23187 were enhanced in its presence. These findings suggest that (1) basal progesterone secretion by fetal cotyledon cells is limited by cholesterol availability; (2) MIX increases steroidogenesis in part by increasing the synthesis of pregnenolone, but its actions are expressed independently of cholesterol availability; (3) both calmodulin and protein kinase C may participate in the modulation of bovine placental steroidogenesis.  相似文献   
57.
58.
59.
The Baz/Par-3-Par-6-aPKC complex is an evolutionarily conserved cassette critical for the development of polarity in epithelial cells, neuroblasts, and oocytes. aPKC is also implicated in long-term synaptic plasticity in mammals and the persistence of memory in flies, suggesting a synaptic function for this cassette. Here we show that at Drosophila glutamatergic synapses, aPKC controls the formation and structure of synapses by regulating microtubule (MT) dynamics. At the presynapse, aPKC regulates the stability of MTs by promoting the association of the MAP1Brelated protein Futsch to MTs. At the postsynapse, aPKC regulates the synaptic cytoskeleton by controlling the extent of Actin-rich and MT-rich areas. In addition, we show that Baz and Par-6 are also expressed at synapses and that their synaptic localization depends on aPKC activity. Our findings establish a novel role for this complex during synapse development and provide a cellular context for understanding the role of aPKC in synaptic plasticity and memory.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号