首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16756篇
  免费   1455篇
  国内免费   1887篇
  2024年   33篇
  2023年   257篇
  2022年   554篇
  2021年   940篇
  2020年   709篇
  2019年   838篇
  2018年   779篇
  2017年   565篇
  2016年   758篇
  2015年   1112篇
  2014年   1328篇
  2013年   1352篇
  2012年   1679篇
  2011年   1546篇
  2010年   959篇
  2009年   766篇
  2008年   888篇
  2007年   822篇
  2006年   666篇
  2005年   594篇
  2004年   436篇
  2003年   356篇
  2002年   338篇
  2001年   201篇
  2000年   189篇
  1999年   188篇
  1998年   131篇
  1997年   122篇
  1996年   125篇
  1995年   103篇
  1994年   91篇
  1993年   71篇
  1992年   96篇
  1991年   65篇
  1990年   61篇
  1989年   53篇
  1988年   40篇
  1987年   29篇
  1986年   31篇
  1985年   34篇
  1984年   24篇
  1983年   16篇
  1982年   21篇
  1981年   9篇
  1980年   9篇
  1979年   13篇
  1976年   14篇
  1975年   10篇
  1974年   6篇
  1970年   7篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
991.
992.
Increased production of reactive oxygen species (ROS) by the mitochondrion has been implicated in the pathogenesis of numerous liver diseases. However, the exact sites of ROS production within liver mitochondria and the electron transport chain are still uncertain. To determine the sites of ROS generation in liver mitochondria we evaluated the ability of a variety of mitochondrial respiratory inhibitors to alter the steady state levels of ROS generated within the intact hepatocyte and in isolated mitochondria. Treatment with myxothiazol alone at concentrations that significantly inhibit respiration dramatically increased the steady-state levels of ROS in hepatocytes. Similar results were also observed in isolated mitochondria oxidizing succinate. Coincubation with antimycin or rotenone had no effect on myxothiazol-induced ROS levels. Myxothiazol stimulation of ROS was mitochondrial in origin as demonstrated by the colocalization of MitoTracker Red and dichlorofluorescein staining using confocal microscopy. Furthermore, diphenyliodonium, an inhibitor that blocks electron flow through the flavin mononucleotide of mitochondrial complex I and other flavoenzymes, significantly attenuated the myxothiazol-induced increase in hepatocyte ROS levels. Together, these data suggest that in addition to the ubiquinone-cytochrome bc(1) complex of complex III, several of the flavin-containing enzymes or iron-sulfur centers within the mitochondrial electron transport chain should also be considered sites of superoxide generation in liver mitochondria.  相似文献   
993.
The lipopolysaccharide of capsule deficient Haemophilus influenzae strain Rd contains an N-acetylgalactosamine residue attached to the terminal globotriose moiety in the Hex5 glycoform. Genome analysis identified an open reading frame HI1578, referred to as lgtD, whose amino acid sequence shows significant level of similarity to a number of bacterial glycosyltransferases involved in lipopolysaccharide biosynthesis. To investigate its function, overexpression and biochemical characterization were performed. Most of the protein was obtained in a highly soluble and active form. By using standard glycosyltransferase assay and HPLC, we show that LgtD is an N-acetylgalactosaminyltransferase with high donor substrate specificity and globotriose is a highly preferred acceptor substrate for the enzyme. The Km for UDP-GalNAc and globotriose are 58 μM and 8.6 mM, respectively. The amino acid sequence of the enzyme shows the conserved features of family II glycosyltransferases. This is the first N-acetylgalactosaminyltransferase identified from H. influenzae, which shows potential application in large-scale synthesis of globo-series oligosaccharides.  相似文献   
994.
995.
Members of the Hsp100 family of heat stress proteins are present in species throughout the bacterial, plant, and fungal kingdoms. Most Hsp100 proteins are composed of five domains that include two nucleotide-binding domains required for their ATP-dependent oligomerization. Mutations within the first but not the second nucleotide-binding site disrupt self-assembly of bacterial Hsp100, whereas the reverse is true for yeast Hsp104. We have examined the functional requirements for oligomerization of plant Hsp101 and have found that Hsp101 resembles Hsp104 in that it assembles into a hexameric complex in an ATP-dependent manner. Self-assembly of Hsp101 involves at least three distinct interaction domains located in the N-proximal domain and in the first and second nucleotide-binding domains. The interaction domain in the second nucleotide-binding domain included the Walker A motif, and mutations within this element disrupted self-assembly of Hsp101. In contrast, mutations affecting conserved residues of the Walker A motif within the first nucleotide-binding site did not affect self-assembly. No interaction between Hsp101 and Hsp104 was observed. These results suggest that plant Hsp101 self-assembly involves multiple evolutionarily diverged interaction domains as well as an evolutionarily conserved requirement for a functional C-proximal nucleotide-binding site.  相似文献   
996.
Peroxide-generated tyrosyl radicals in both prostaglandin H synthase (PGHS) isozymes have been demonstrated to couple the peroxidase and cyclooxygenase activities by serving as the immediate oxidant for arachidonic acid (AA) in cyclooxygenase catalysis. Acetylation of Ser-530 of PGHS-1 by aspirin abolishes all oxygenase activity and transforms the peroxide-induced tyrosyl radical from a functional 33-35-gauss (G) wide doublet/wide singlet to a 26-G narrow singlet unable to oxidize AA. In contrast, aspirin-treated PGHS-2 (ASA-PGHS-2) no longer forms prostaglandins but retains oxygenase activity forming 11(R)- and 15(R)-hydroperoxyeicosatetraenoic acid and also retains the EPR line-shape of the native peroxide-induced 29-30-G wide singlet radical. To evaluate the functional role of the wide singlet radical in ASA-PGHS-2, we have examined the ability of this radical to oxidize AA in single-turnover EPR studies. Anaerobic addition of AA to ASA-PGHS-2 immediately after formation of the wide singlet radical generated either a 7-line EPR signal similar to the pentadienyl AA radical obtained in native PGHS-2 or a 26-28-G singlet radical. These EPR signals could be accounted for by a pentadienyl radical and a strained allyl radical, respectively. Experiments using 11d-AA, 13(R)d-AA, 15d-AA, 13,15d(2)-AA, and octadeuterated AA (d(8)-AA) confirmed that the unpaired electron in the pentadienyl radical is delocalized over C11, C13, and C15. A 6-line EPR radical was observed when 16d(2)-AA was used, indicating only one strongly interacting C16 hydrogen. These results support a functional role for peroxide-generated tyrosyl radicals in lipoxygenase catalysis by ASA-PGHS-2 and also indicate that the AA radical in ASA-PGHS-2 is more constrained than the corresponding radical in native PGHS-2.  相似文献   
997.
Patients with chronic Chagas' heart disease (cChHD) develop a strong IgG response against the C-terminal region of the Trypanosoma cruzi ribosomal P2beta protein (TcP2beta). These antibodies have been shown to exert an in vitro chronotropic effect on cardiocytes through stimulation of the beta1-adrenergic receptor (beta1-AR). Moreover, the presence of antibodies recognizing the TcP2beta C-terminus was associated with cardiac alterations in mice immunized with the corresponding recombinant protein. Here, we demonstrate that DNA immunization could be used to modulate the specificity of the anti-TcP2beta humoral response in order to avoid the production of pathogenic antibodies. After DNA injection, we detected IgG antibodies that were directed only to internal epitopes of the TcP2beta molecule and that did not exert anti-beta1-AR functional activity, measured as an increase in intracellular cAMP levels of transfected COS-7 cells. Accordingly, DNA-immunized mice did not present electrocardiographic alterations. These data demonstrate that anti-TcP2beta antibodies elicited by DNA immunization are completely different in their specificity and functional activity from those produced during T. cruzi infection.  相似文献   
998.
The genes encoding the heat shock proteins HSP10 and HSP16 of the salmon pathogen Piscirickettsia salmonis have been isolated and sequenced. The HSP10 coding sequence is located in an open reading frame of 291 base pairs encoding 96 aminoacids. The HSP16 coding region was isolated as a 471 base pair fragment encoding a protein of 156 aminoacids. The deduced aminoacid sequences of both proteins show a significant homology to the respective protein from other prokaryotic organisms. Both proteins were expressed in E. coli as fusion proteins with thioredoxin and purified by chromatography on Nicolumn. A rabbit serum against P. salmonis total proteins reacts with the recombinant HSP10 and HSP16 proteins. Similar reactivity was determined by ELISA using serum from salmon infected with P. salmonis. The possibility of formulating a vaccine containing these two proteins is discussed.  相似文献   
999.
The diversity and evolution of bitter taste perception in mammals is not well understood. Recent discoveries of bitter taste receptor (T2R) genes provide an opportunity for a genetic approach to this question. We here report the identification of 10 and 30 putative T2R genes from the draft human and mouse genome sequences, respectively, in addition to the 23 and 6 previously known T2R genes from the two species. A phylogenetic analysis of the T2R genes suggests that they can be classified into three main groups, which are designated A, B, and C. Interestingly, while the one-to-one gene orthology between the human and mouse is common to group B and C genes, group A genes show a pattern of species- or lineage-specific duplication. It is possible that group B and C genes are necessary for detecting bitter tastants common to both humans and mice, whereas group A genes are used for species-specific bitter tastants. The analysis also reveals that phylogenetically closely related T2R genes are close in their chromosomal locations, demonstrating tandem gene duplication as the primary source of new T2Rs. For closely related paralogous genes, a rate of nonsynonymous nucleotide substitution significantly higher than the rate of synonymous substitution was observed in the extracellular regions of T2Rs, which are presumably involved in tastant-binding. This suggests the role of positive selection in the diversification of newly duplicated T2R genes. Because many natural poisonous substances are bitter, we conjecture that the mammalian T2R genes are under diversifying selection for the ability to recognize a diverse array of poisons that the organisms may encounter in exploring new habitats and diets.  相似文献   
1000.
In familial hyperproinsulinemia, specific mutations in the proinsulin gene are linked with a profound increase in circulating plasma proinsulin levels. However, the molecular and cellular basis for this disease remains uncharacterized. Here we investigated how these mutations may disrupt the sorting signal required to target proinsulin to the secretory granules of the regulated secretory pathway, resulting in the unregulated release of proinsulin. Using a combination of molecular modeling and site-directed mutagenesis, we have identified structural molecular motifs in proinsulin that are necessary for correct sorting into secretory granules of endocrine cells. We show that membrane carboxypeptidase E (CPE), previously identified as a prohormone-sorting receptor, is essential for proinsulin sorting. This was demonstrated through short interfering RNA-mediated depletion of CPE and transfection with a dominant negative mutant of CPE in a beta-cell line. Mutant proinsulins found in familial hyperproinsulinemia failed to bind to CPE and were not sorted efficiently. These findings provide evidence that the elevation of plasma proinsulin levels found in patients with familial hyperproinsulinemia is caused by the disruption of CPE-mediated sorting of mutant proinsulins to the regulated secretory pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号