首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1380篇
  免费   121篇
  国内免费   1篇
  2023年   9篇
  2022年   18篇
  2021年   44篇
  2020年   12篇
  2019年   28篇
  2018年   27篇
  2017年   15篇
  2016年   38篇
  2015年   80篇
  2014年   85篇
  2013年   83篇
  2012年   123篇
  2011年   121篇
  2010年   56篇
  2009年   44篇
  2008年   86篇
  2007年   83篇
  2006年   71篇
  2005年   73篇
  2004年   54篇
  2003年   56篇
  2002年   61篇
  2001年   13篇
  2000年   12篇
  1999年   18篇
  1998年   13篇
  1997年   9篇
  1996年   9篇
  1995年   9篇
  1994年   4篇
  1993年   7篇
  1992年   12篇
  1991年   11篇
  1990年   4篇
  1988年   5篇
  1986年   3篇
  1985年   6篇
  1984年   9篇
  1982年   9篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1976年   5篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1970年   6篇
  1969年   3篇
  1967年   4篇
  1929年   3篇
排序方式: 共有1502条查询结果,搜索用时 15 毫秒
991.
Sperm motility is an important prerequisite for successful fertilization and is regulated by cyclic AMP activated protein kinase A which phosphorylates flagella proteins like axonemal dynein and initiates motility. Increase in calcium influx reverses this process by dephosphorylation that is mediated by calcineurin. Analyzing the phosphoenriched fractions of spermatozoa lysates from eight normozoospermic-, and asthenozoospermic-samples, respectively, by Nano UPLC-MS(E), the present study investigates the phosphoproteins involved in sperm motility in an attempt to identify the key pathways regulating sperm motility and likely to be altered in spermatozoa of asthenozoospermic individuals. 66 phosphoproteins were differentially regulated in asthenozoospermia. The deregulated proteins comprised predominantly the HSPs, cytoskeletal proteins, proteins associated with the fibrous sheath, and those associated with energy metabolism. EM analysis of these spermatozoa demonstrated significant defects in mitochondria, and fibrous sheath and these defects could be correlated with the altered proteome. Pathway analysis revealed that carbohydrate and energy metabolism, cAMP mediated PKA signaling, PI3K/AKT signaling and pathway regulating actin based motility by Rho were significantly altered indicating that motility in spermatozoa is regulated through the concerted effort of these pathways. The data identified signature molecules that have the potential as biomarkers for diagnosing etiology of asthenozoospermia.  相似文献   
992.
Tabak JA  Zayas V 《PloS one》2012,7(5):e36671
Research has shown that people are able to judge sexual orientation from faces with above-chance accuracy, but little is known about how these judgments are formed. Here, we investigated the importance of well-established face processing mechanisms in such judgments: featural processing (e.g., an eye) and configural processing (e.g., spatial distance between eyes). Participants judged sexual orientation from faces presented for 50 milliseconds either upright, which recruits both configural and featural processing, or upside-down, when configural processing is strongly impaired and featural processing remains relatively intact. Although participants judged women's and men's sexual orientation with above-chance accuracy for upright faces and for upside-down faces, accuracy for upside-down faces was significantly reduced. The reduced judgment accuracy for upside-down faces indicates that configural face processing significantly contributes to accurate snap judgments of sexual orientation.  相似文献   
993.

Background

Increased fertility rates in HIV-infected women receiving antiretroviral therapy (ART) have been attributed to improved immunological function; it is unknown to what extent the rise in pregnancy rates is due to unintended pregnancies.

Methods

Non-pregnant women ages 18–35 from four public-sector ART clinics in Johannesburg, South Africa, were enrolled into a prospective cohort and followed from August 2009–March 2011. Fertility intentions, contraception and pregnancy status were measured longitudinally at participants'' routine ART clinic visits.

Findings

Of the 850 women enrolled, 822 (97%) had at least one follow-up visit and contributed 745.2 person-years (PY) at-risk for incident pregnancy. Overall, 170 pregnancies were detected in 161 women (incidence rate [IR]: 21.6/100 PY [95% confidence interval (CI): 18.5–25.2]). Of the 170 pregnancies, 105 (62%) were unplanned. Unmet need for contraception was 50% higher in women initiating ART in the past year as compared to women on ART>1 year (prevalence ratio 1.5 [95% CI: 1.1–2.0]); by two years post-ART initiation, nearly one quarter of women had at least one unplanned pregnancy. Cumulative incidence of pregnancy was equally high among recent ART initiators and ART experienced participants: 23.9% [95% CI: 16.4–34.1], 15.9% [12.0–20.8], and 21.0% [16.8–26.1] for women on ART 0–1 yr, >1 yr–2 yrs, and >2 yrs respectively (log-rank, p = 0.54). Eight hormonal contraceptive failures were detected [IR: 4.4 [95% CI: 2.2–8.9], 7/8 among women using injectable methods. Overall 47% (80/170) of pregnancies were not carried to term.

Conclusions

Rates of unintended pregnancies among women on ART are high, including women recently initiating ART with lower CD4 counts and higher viral loads. A substantial burden of pregnancy loss was observed. Integration of contraceptive services and counselling into ART care is necessary to reduce maternal and child health risks related to mistimed and unwanted pregnancies. Further research into injectable contraceptive failures on ART is warranted.  相似文献   
994.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by degeneration of upper and lower motor neurons. To date, glycosylation patterns of glycoproteins in fluids of ALS patients have not been described. Moreover, the aberrant glycosylation related to the pathogenesis of other neurodegenerative diseases encouraged us to explore the glycome of ALS patient sera. We found high levels of sialylated glycans and low levels of core fucosylated glycans in serum-derived N-glycans of patients with ALS, compared to healthy volunteer sera. Based on these results, we analyzed the IgG Fc N(297)-glycans, as IgG are major serum glycoproteins affected by sialylation or core fucosylation and are found in the motor cortex of ALS patients. The analyses revealed a distinct glycan, A2BG2, in IgG derived from ALS patient sera (ALS-IgG). This glycan increases the affinity of IgG to CD16 on effector cells, consequently enhancing Antibody-Dependent Cellular Cytotoxicity (ADCC). Therefore, we explore whether the Fc-N(297)-glycans of IgG may be involved in ALS disease. Immunostaining of brain and spinal cord tissues revealed over-expression of CD16 and co-localization of intact ALS-IgG with CD16 and in brain with activated microglia of G93A-SOD1 mice. Intact ALS-IgG enhanced effector cell activation and ADCC reaction in comparison to sugar-depleted or control IgG. ALS-IgG were localized in the synapse between brain microglia and neurons of G93A-SOD1 mice, manifesting a promising in vivo ADCC reaction. Therefore, glycans of ALS-IgG may serve as a biomarker for the disease and may be involved in neuronal damage.  相似文献   
995.
996.
Humanized mouse models offer a challenging possibility to study human cell function in vivo. In the huPBL-SCID-huSkin allograft model human skin is transplanted onto immunodeficient mice and allowed to heal. Thereafter allogeneic human peripheral blood mononuclear cells are infused intra peritoneally to induce T cell mediated inflammation and microvessel destruction of the human skin. This model has great potential for in vivo study of human immune cells in (skin) inflammatory processes and for preclinical screening of systemically administered immunomodulating agents. Here we studied the inflammatory skin response of human keratinocytes and human T cells and the concomitant systemic human T cell response.As new findings in the inflamed human skin of the huPBL-SCID-huSkin model we here identified: 1. Parameters of dermal pathology that enable precise quantification of the local skin inflammatory response exemplified by acanthosis, increased expression of human β-defensin-2, Elafin, K16, Ki67 and reduced expression of K10 by microscopy and immunohistochemistry. 2. Induction of human cytokines and chemokines using quantitative real-time PCR. 3. Influx of inflammation associated IL-17A-producing human CD4+ and CD8+ T cells as well as immunoregulatory CD4+Foxp3+ cells using immunohistochemistry and -fluorescence, suggesting that active immune regulation is taking place locally in the inflamed skin. 4. Systemic responses that revealed activated and proliferating human CD4+ and CD8+ T cells that acquired homing marker expression of CD62L and CLA. Finally, we demonstrated the value of the newly identified parameters by showing significant changes upon systemic treatment with the T cell inhibitory agents cyclosporine-A and rapamycin.In summary, here we equipped the huPBL-SCID-huSkin humanized mouse model with relevant tools not only to quantify the inflammatory dermal response, but also to monitor the peripheral immune status. This combined approach will gain our understanding of the dermal immunopathology in humans and benefit the development of novel therapeutics for controlling inflammatory skin diseases.  相似文献   
997.
High levels of hydrological connectivity during seasonal flooding provide significant opportunities for movements of fish between rivers and their floodplains, estuaries and the sea, possibly mediating food web subsidies among habitats. To determine the degree of utilisation of food sources from different habitats in a tropical river with a short floodplain inundation duration (~2 months), stable isotope ratios in fishes and their available food were measured from three habitats (inundated floodplain, dry season freshwater, coastal marine) in the lower reaches of the Mitchell River, Queensland (Australia). Floodplain food sources constituted the majority of the diet of large-bodied fishes (barramundi Lates calcarifer, catfish Neoarius graeffei) captured on the floodplain in the wet season and for gonadal tissues of a common herbivorous fish (gizzard shad Nematalosa come), the latter suggesting that critical reproductive phases are fuelled by floodplain production. Floodplain food sources also subsidised barramundi from the recreational fishery in adjacent coastal and estuarine areas, and the broader fish community from a freshwater lagoon. These findings highlight the importance of the floodplain in supporting the production of large fishes in spite of the episodic nature and relatively short duration of inundation compared to large river floodplains of humid tropical regions. They also illustrate the high degree of food web connectivity mediated by mobile fish in this system in the absence of human modification, and point to the potential consequences of water resource development that may reduce or eliminate hydrological connectivity between the river and its floodplain.  相似文献   
998.
Lam P  Zhao L  McFarlane HE  Aiga M  Lam V  Hooker TS  Kunst L 《Plant physiology》2012,159(4):1385-1395
The cuticle is a protective layer that coats the primary aerial surfaces of land plants and mediates plant interactions with the environment. It is synthesized by epidermal cells and is composed of a cutin polyester matrix that is embedded and covered with cuticular waxes. Recently, we have discovered a novel regulatory mechanism of cuticular wax biosynthesis that involves the ECERIFERUM7 (CER7) ribonuclease, a core subunit of the exosome. We hypothesized that at the onset of wax production, the CER7 ribonuclease degrades an mRNA specifying a repressor of CER3, a wax biosynthetic gene whose protein product is required for wax formation via the decarbonylation pathway. In the absence of this repressor, CER3 is expressed, leading to wax production. To identify the putative repressor of CER3 and to unravel the mechanism of CER7-mediated regulation of wax production, we performed a screen for suppressors of the cer7 mutant. Our screen resulted in the isolation of components of the RNA-silencing machinery, RNA-DEPENDENT RNA POLYMERASE1 and SUPPRESSOR OF GENE SILENCING3, implicating RNA silencing in the control of cuticular wax deposition during inflorescence stem development in Arabidopsis (Arabidopsis thaliana).  相似文献   
999.
Peptide neurotransmitters function as key intercellular signaling molecules in the nervous system. These peptides are generated in secretory vesicles from proneuropeptides by proteolytic processing at dibasic residues, followed by removal of N- and/or C-terminal basic residues to form active peptides. Enkephalin biosynthesis from proenkephalin utilizes the cysteine protease cathepsin L and the subtilisin-like prohormone convertase 2 (PC2). Cathepsin L generates peptide intermediates with N-terminal basic residue extensions, which must be removed by an aminopeptidase. In this study, we identified cathepsin H as an aminopeptidase in secretory vesicles that produces (Met)enkephalin (ME) by sequential removal of basic residues from KR-ME and KK-ME, supported by in vivo knockout of the cathepsin H gene. Localization of cathepsin H in secretory vesicles was demonstrated by immunoelectron microscopy and immunofluorescence deconvolution microscopy. Purified human cathepsin H sequentially removes N-terminal basic residues to generate ME, with peptide products characterized by nano-LC-MS/MS tandem mass spectrometry. Cathepsin H shows highest activities for cleaving N-terminal basic residues (Arg and Lys) among amino acid fluorogenic substrates. Notably, knockout of the cathepsin H gene results in reduction of ME in mouse brain. Cathepsin H deficient mice also show a substantial decrease in galanin peptide neurotransmitter levels in brain. These results illustrate a role for cathepsin H as an aminopeptidase for enkephalin and galanin peptide neurotransmitter production.  相似文献   
1000.
The current study examined the role of PLD2 in the maintenance of mast cell structure. Phospholipase D (PLD) catalyzes hydrolysis of phosphatidylcholine to produce choline and phosphatidic acid (PA). PLD has two isoforms, PLD1 and PLD2, which vary in expression and localization depending on the cell type. The mast cell line RBL-2H3 was transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2. The results of this study show that PLD2CI cells have a distinct star-shaped morphology, whereas PLD2CA and RBL-2H3 cells are spindle shaped. In PLD2CI cells, the Golgi complex was also disorganized with dilated cisternae, and more Golgi-associated vesicles were present as compared with the PLD2CA and RBL-2H3 cells. Treatment with exogenous PA led to the restoration of the wild-type Golgi complex phenotype in PLD2CI cells. Conversely, treatment of RBL-2H3 and PLD2CA cells with 1% 1-Butanol led to a disruption of the Golgi complex. The distribution of acidic compartments, including secretory granules and lysosomes, was also modified in PLD2CI cells, where they concentrated in the perinuclear region. These results suggest that the PA produced by PLD2 plays an important role in regulating cell morphology in mast cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号