首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2011年   3篇
  2010年   6篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1993年   1篇
排序方式: 共有50条查询结果,搜索用时 62 毫秒
31.
The role that stromal renal cell carcinoma (RCC) plays in support of tumor progression is unclear. Here we sought to determine the predictive value on patient survival of several markers of stromal activation and the feasibility of a fibroblast-derived extracellular matrix (ECM) based three-dimensional (3D) culture stemming from clinical specimens to recapitulate stromal behavior in vitro. The clinical relevance of selected stromal markers was assessed using a well annotated tumor microarray where stromal-marker levels of expression were evaluated and compared to patient outcomes. Also, an in vitro 3D system derived from fibroblasts harvested from patient matched normal kidney, primary RCC and metastatic tumors was employed to evaluate levels and localizations of known stromal markers such as the actin binding proteins palladin, alpha-smooth muscle actin (α-SMA), fibronectin and its spliced form EDA. Results suggested that RCCs exhibiting high levels of stromal palladin correlate with a poor prognosis, as demonstrated by overall survival time. Conversely, cases of RCCs where stroma presents low levels of palladin expression indicate increased survival times and, hence, better outcomes. Fibroblast-derived 3D cultures, which facilitate the categorization of stromal RCCs into discrete progressive stromal stages, also show increased levels of expression and stress fiber localization of α-SMA and palladin, as well as topographical organization of fibronectin and its splice variant EDA. These observations are concordant with expression levels of these markers in vivo. The study proposes that palladin constitutes a useful marker of poor prognosis in non-metastatic RCCs, while in vitro 3D cultures accurately represent the specific patient's tumor-associated stromal compartment. Our observations support the belief that stromal palladin assessments have clinical relevance thus validating the use of these 3D cultures to study both progressive RCC-associated stroma and stroma-dependent mechanisms affecting tumorigenesis. The clinical value of assessing RCC stromal activation merits further study.  相似文献   
32.
33.
34.
Genetic susceptibility probably plays a role in the development and/or progression of diabetic kidney disease. Small ubiquitin-related modifier 4 (SUMO4) mRNA is expressed in human kidney. Substitution of methionine with valine at codon 55 (M55V) of SUMO4 gene induces higher nuclear factor-kB activity, which is known to mediate the development of kidney disease in individuals with diabetes. We investigated the association between the SUMO4 M55V (rs237025, c.163 G>A) and kidney disease in north Indian subjects with diabetes. A case–control analysis was performed using genomic DNA samples from 216 diabetic patients without nephropathy (DM) and 201 diabetic with nephropathy (DN). The SUMO4 c.163 G>A polymorphism was genotyped using polymerase chain reaction amplification followed by restriction digestion. The duration of diabetes was significantly greater in DN. The genotypic and allelic frequencies were different in DM and DN groups: GG genotype was significantly more frequent in DN as compared to DM (p = 0.018, OR 1.72, 95 % CI 1.1–2.7). Similarly the G allele was more frequent in DN compared to DM (p = 0.017, OR 1.4, 95 % CI 1.1–1.8). This study suggests that SUMO4 c.163 G>A polymorphism is associated with the susceptibility to diabetic nephropathy in north Indian subjects with type 2 diabetes.  相似文献   
35.
Rubber trees infected with a host-specific cassiicolin toxin often experience considerable leaf fall, which in turn results in loss of crop productivity. It was recently revealed that cassiicolin-specific single-chain variable fragments (scFv) can successfully reduce the toxic effects of cassiicolin. However, the detailed mechanism of antibody action remains poorly understood. The primary sequence of the newly sequenced cassiicolin-specific scFv was highly homologous to several members of single-chain antibodies in the 14B7 family. In this study, with the aid of homology modeling, the three-dimensional structure of cassiicolin-specific scFv was elucidated, and was found to exhibit a characteristic immunoglobulin fold that mainly consists of β sheets. Additionally, molecular docking between the modeled scFv antibody and the available three-dimensional crystal structure of cassiicolin toxin was also performed. The predicted structural complex and the change in accessible surface area between the toxin and the scFv antibody upon complexation reveal the potential role of certain complementarity determining region (CDR) amino acid residues in the formation of the complex. These computational results suggest that mutagenesis experiments that are aimed at validating the model and improving the binding affinity of cassiicolin-specific scFv antibodies for the toxin should be performed.  相似文献   
36.
Co-cultivation of mutant Penicillium oxalicum SAU(E)-3.510 and Pleurotus ostreatus MTCC 1804 was evaluated for the production of xylanase-laccase mixture under solid-state fermentation (SSF) condition. Growth compatibility between mutant P. oxalicum SAU(E)-3.510 and white rot fungi (P. ostreatus MTCC 1804, Trametes hirsuta MTCC 136 and Pycnoporus sp. MTCC 137) was analyzed by growing them on potato dextrose agar plate. Extracellular enzyme activities were determined spectrophotometrically. Under derived conditions, paired culturing of mutant P. oxalicum SAU(E)-3.510 and P. ostreatus MTCC 1804 resulted in 58% and 33% higher levels of xylanase and laccase production, respectively. A combination of sugarcane bagasse and black gram husk in a ratio of 3:1 was found to be the most ideal solid substrate and support for fungal colonization and enzyme production during co-cultivation. Maximum levels of xylanase (8205.31 ± 168.31 IU g(-1)) and laccase (375.53 ± 34.17 IU g(-1)) during SSF were obtained by using 4 g of solid support with 80% of moisture content. Furthermore, expressions of both xylanase and laccase were characterized during mixed culture by zymogram analysis. Improved levels of xylanase and laccase biosynthesis were achieved by co-culturing the mutant P. oxalicum SAU(E)-3.510 and P. ostreatus MTCC 1804. This may be because of efficient substrate utilization as compared to their respective monocultures in the presence of lignin degradation compounds because of synergistic action of xylanase and laccase. Understanding and developing the process of co-cultivation appears productive for the development of mixed enzyme preparation with tremendous potential for biobleaching.  相似文献   
37.
PGR5‐LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) regulates photosystem I cyclic electron flow which transiently activates non‐photochemical quenching at the onset of light. Here, we show that a disulfide‐based mechanism of PGRL1 regulated this process in vivo at the onset of low light levels. We found that PGRL1 regulation depended on active formation of key regulatory disulfides in the dark, and that PGR5 was required for this activity. The disulfide state of PGRL1 was modulated in plants by counteracting reductive and oxidative components and reached a balanced state that depended on the light level. We propose that the redox regulation of PGRL1 fine‐tunes a timely activation of photosynthesis at the onset of low light.  相似文献   
38.
Identification of structural domains in uncharacterized protein sequences is important in the prediction of protein tertiary folds and functional sites, and hence in designing biologically active molecules. We present a new predictive computational method of classifying a protein into single, two continuous or two discontinuous domains using Bayesian Data Mining. The algorithm requires only the primary sequence and computer-predicted secondary structure. It incorporates correlation patterns between certain 3-dimensional motifs and some local helical folds found conserved in the vicinity of protein domains with high statistical confidence. The prediction of domain-class by this computationally simple and fast method shows good accuracy of prediction-average accuracies 83.3% for single domain, 60% for two continuous and 65.7% for two discontinuous domain proteins. Experiments on the large validation sample show its performance to be significantly better than that of DGS and DomSSEA. Computations of Bayesian probabilities show important features in terms of correlation of certain conserved patterns of secondary folds and tertiary motifs and give new insight. Applications for improved accuracy of predicting domain boundary points relevant to protein structural and functional modeling are also highlighted.  相似文献   
39.
Recently it has been shown that kaposica, an immune evasion protein of Kaposi's sarcoma-associated herpesvirus, inactivates complement by acting on C3-convertases by accelerating their decay as well as by acting as a cofactor in factor I-mediated inactivation of their subunits C3b and C4b. Here, we have mapped the functional domains of kaposica. We show that SCRs 1 and 2 (SCRs 1-2) and 1-4 are essential for the classical and alternative pathway C3-convertase decay-accelerating activity (DAA), respectively, while the SCRs 2-3 are required for factor I cofactor activity (CFA) for C3b and C4b. SCR 3 and SCRs 1 and 4, however, contribute to optimal classical pathway DAA and C3b CFA, respectively. Binding data show that SCRs 1-4 and SCRs 1-2 are the smallest structural units required for measuring detectable binding to C3b and C4b, respectively. The heparin-binding site maps to SCR 1.  相似文献   
40.
Group A streptococcus (GAS) is a leading cause of severe, invasive human infections, including necrotizing fasciitis and toxic shock syndrome. An important element of the mammalian innate defense system against invasive bacterial infections such as GAS is the production of antimicrobial peptides (AMPs) such as cathelicidins. In this study, we identify a specific GAS phenotype that confers resistance to host AMPs. Allelic replacement of the dltA gene encoding d-alanine-d-alanyl carrier protein ligase in an invasive serotype M1 GAS isolate led to loss of teichoic acid d-alanylation and an increase in net negative charge on the bacterial surface. Compared to the wild-type (WT) parent strain, the GAS DeltadltA mutant exhibited increased susceptibility to AMP and lysozyme killing and to acidic pH. While phagocytic uptake of WT and DeltadltA mutants by human neutrophils was equivalent, neutrophil-mediated killing of the DeltadltA strain was greatly accelerated. Furthermore, we observed the DeltadltA mutant to be diminished in its ability to adhere to and invade cultured human pharyngeal epithelial cells, a likely proximal step in the pathogenesis of invasive infection. Thus, teichoic acid d-alanylation may contribute in multiple ways to the propensity of invasive GAS to bypass mucosal defenses and produce systemic infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号