首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   950篇
  免费   67篇
  2022年   7篇
  2021年   10篇
  2020年   4篇
  2019年   9篇
  2018年   14篇
  2017年   15篇
  2016年   38篇
  2015年   41篇
  2014年   50篇
  2013年   73篇
  2012年   66篇
  2011年   52篇
  2010年   44篇
  2009年   32篇
  2008年   40篇
  2007年   61篇
  2006年   63篇
  2005年   52篇
  2004年   50篇
  2003年   57篇
  2002年   50篇
  2001年   7篇
  2000年   8篇
  1999年   6篇
  1998年   12篇
  1997年   4篇
  1996年   10篇
  1995年   13篇
  1994年   5篇
  1993年   5篇
  1992年   9篇
  1991年   6篇
  1990年   6篇
  1989年   6篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   9篇
  1978年   3篇
  1977年   6篇
  1976年   5篇
  1974年   4篇
  1969年   3篇
  1967年   4篇
排序方式: 共有1017条查询结果,搜索用时 15 毫秒
131.
132.
133.
A new set of quinazolinedione sulfonamide derivatives as competitive AMPA receptor antagonist with improved properties compared to 1 is disclosed. By modulating physico-chemical properties, compound 29 was identified with a low ED(50) of 5.5mg/kg in an animal model of anticonvulsant activity after oral dosage.  相似文献   
134.
135.
Xanthomonas oryzae pv. oryzae (Xoo) is the second most important rice pathogen, causing a disease called bacterial leaf blight. Xoo colonizes and infects the vascular tissue resulting in tissue necrosis and wilting causing significant yield losses worldwide. In this study Xoo infected vascular fluid (xylem sap) was recovered and analyzed for secreted Xoo proteins. Three independent experiments resulted in the identification of 324 different proteins, 64 proteins were found in all three samples which included many of the known virulence-associated factors. In addition, 10 genes encoding for the identified proteins were inactivated and one mutant displayed statistically a significant loss in virulence when compared to the wild type Xoo, suggesting that a new virulence-associated factor has been revealed. The usefulness of this approach in understanding the lifestyle and unraveling the virulence-associated factors of phytopathogenic vascular bacteria is discussed.  相似文献   
136.
137.
138.
A silica monolith was prepared from commercial silica powder dispersed in water containing polymeric water soluble bio-organics (SBOs) isolated from composted urban vegetable wastes. The monolith and the pristine powder were characterized for their morphology and reactivity for immobilizing soybean peroxidase (SBP). Compared to the pristine powder, the monolith exhibited lower specific surface area (about 30% less), total pore volume and pore size (of about 200 Å of width), and bond less SBP under the same experimental conditions. The immobilized SBP products were tested for their catalytic activity in the reaction of hydrogen peroxide, 3-(dimethylamino)benzoic acid (DMAB) and 3-methyl-2-benzothiazolinone hydrazone (MBTH), by comparison with the same reaction performed with native SBP in solution. The reaction performed in the presence of immobilized SBP was slower than that catalyzed by native SBP in solution. However, in spite of its lower SBP content, monolith immobilized SBP (M-SBP) was found kinetically more active than the powder immobilized SBP (P-SBP). Also, M-SBP allowed to achieve the same reagents conversion as native SBP (95% of reagent conversion), although in longer time, whereas the maximum reagent conversion achieved with P-SBP was much lower (75% of reagent conversion). The M-SBP was more easily recovered from the reaction medium and found more stable than P-SBP upon repeated catalyst recycling (after 20 cycles 75–80% of the initial activity was retained by both immobilized samples, slightly higher in the case of M-SBP).  相似文献   
139.
Availability of living organisms to mimic key step of amyloidogenesis of human protein has become an indispensable tool for our translation approach aiming at filling the deep gap existing between the biophysical and biochemical data obtained in vitro and the pathological features observed in patients. Human β2-microglobulin (β2-m) causes systemic amyloidosis in haemodialysed patients. The structure, misfolding propensity, kinetics of fibrillogenesis and cytotoxicity of this protein, in vitro, have been studied more extensively than for any other globular protein. However, no suitable animal model for β2-m amyloidosis has been so far reported. We have now established and characterized three new transgenic C. elegans strains expressing wild type human β2-m and two highly amyloidogenic isoforms: P32G variant and the truncated form ΔN6 lacking of the 6 N-terminal residues. The expression of human β2-m affects the larval growth of C. elegans and the severity of the damage correlates with the intrinsic propensity to self-aggregate that has been reported in previous in vitro studies. We have no evidence of the formation of amyloid deposits in the body-wall muscles of worms. However, we discovered a strict correlation between the pathological phenotype and the presence of oligomeric species recognized by the A11 antibody. The strains expressing human β2-m exhibit a locomotory defect quantified with the body bends assay. Here we show that tetracyclines can correct this abnormality confirming that these compounds are able to protect a living organism from the proteotoxicity of human β2-m.  相似文献   
140.
Microbial diseases occur as a result of multifarious host-pathogen interactions. However, invading pathogens encounter a large number of different harmless and beneficial bacterial species, which colonize and reside in the host. Surprisingly, there has been little study of the possible interactions between incoming pathogens and the resident bacterial community. Recent studies have revealed that resident bacteria assist different types of incoming pathogens via a wide variety of mechanisms including cell-cell signaling, metabolic interactions, evasion of the immune response and a resident-to-pathogen switch. This calls for serious consideration of pathogen-microbe interactions in the host with respect to disease severity and progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号