首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1559篇
  免费   129篇
  2023年   6篇
  2022年   14篇
  2021年   14篇
  2020年   6篇
  2019年   18篇
  2018年   23篇
  2017年   20篇
  2016年   51篇
  2015年   57篇
  2014年   79篇
  2013年   108篇
  2012年   115篇
  2011年   85篇
  2010年   64篇
  2009年   59篇
  2008年   68篇
  2007年   100篇
  2006年   82篇
  2005年   80篇
  2004年   84篇
  2003年   81篇
  2002年   62篇
  2001年   14篇
  2000年   25篇
  1999年   20篇
  1998年   19篇
  1996年   17篇
  1995年   23篇
  1994年   14篇
  1993年   14篇
  1992年   29篇
  1991年   19篇
  1990年   24篇
  1989年   14篇
  1988年   10篇
  1987年   17篇
  1986年   9篇
  1985年   11篇
  1984年   9篇
  1981年   8篇
  1979年   10篇
  1977年   6篇
  1976年   10篇
  1974年   6篇
  1973年   7篇
  1972年   5篇
  1969年   5篇
  1968年   11篇
  1967年   8篇
  1966年   5篇
排序方式: 共有1688条查询结果,搜索用时 31 毫秒
901.
Pseudomonas corrugata is a phytopathogenic bacterium, causal agent of tomato pith necrosis, yet it is an ubiquitous bacterium that is part of the microbial community in the soil and in the rhizosphere of different plant species. Although it is a very heterogeneous species, all the strains tested were able to produce short chain acyl homoserine lactone (AHL) quorum sensing signal molecules. The main AHL produced was N-hexanoyl-L-homoserine lactone (C(6)-AHL). An AHL quorum sensing system, designated PcoI/PcoR, was identified and characterized. The role of the quorum sensing system in the expression of a variety of traits was evaluated. Inactivation of pcoI abolished the production of AHLs. The pcoR mutant, but not the pcoI mutant, was impaired in swarming, unable to cause a hypersensitivity response on tobacco and resulted in a reduced tomato pith necrosis phenotype. The pcoI mutant showed a reduced antimicrobial activity against various fungi and bacteria when assayed on King's B medium. These results demonstrate that the AHL quorum sensing in Ps. corrugata regulates traits that contribute to virulence, antimicrobial activity and fitness. This is the first report of genes of Ps. corrugata involved in the disease development and biological control activity.  相似文献   
902.
We investigated the efficacy of Tachyplesin III alone or combined with piperacillin-tazobactam (TZP) to prevent biofilm formation in vitro and in a rat model of Pseudomonas aeruginosa ureteral stent infection. We have observed that in vitro TZP, in presence of Tachyplesin III, showed minimal inhibitory concentrations (MIC)s twofold and minimal bactericidal concentrations (MBC)s eightfold lower. The in vivo study showed that rats that received intraperitoneal TZP showed the lowest bacterial numbers. Tachyplesin III combined with TZP showed efficacies higher than that of each single compound. Coating ureteral stents with Tachyplesin III is able to inhibit bacterial growth up to 1000 times.  相似文献   
903.
The role of arachidonic acid (AA) on the development of adipose tissue is still controversial since its metabolites, i.e., prostaglandins, can either stimulate or inhibit preadipocyte differentiation in vitro. In the present study, we evaluated the effects of early postnatal supplementation of AA on body weight and adipose tissue development in guinea pigs. Male newborn guinea pigs were fed for 21 days (day 21) with diets (milk and pellet) supplemented (+AA) or not (-AA) with 1.2% (total fatty acids) AA. From day 21 to day 105 both groups were fed a chow diet. The 21-days-old +AA pups showed a twofold higher AA accretion in phospholipids associated with a two- to sixfold increase in several prostaglandins, such as 6-keto PGF(1alpha) (the stable hydrolysis product of PGI(2)), PGF(2alpha), PGE(2), and PGD(2) in adipose tissue, compared with the -AA group. No difference in fat pad and body weight, aP2, and leptin gene expression in adipose tissue, fasting plasma glucose, free-fatty acids, and triglyceride concentration was observed between groups at day 21 or day 105. These results show that dietary supplementation of AA during the suckling/weaning period increases prostaglandin levels in adipose tissue but does not influence early fat mass development in the guinea pig.  相似文献   
904.
905.
Reduced expression and/or activity of antioxidant proteins lead to oxidative stress, accelerated aging and neurodegeneration. However, while excess reactive oxygen species (ROS) are toxic, regulated ROS play an important role in cell signaling. Perturbation of redox status, mutations favoring protein misfolding, altered glyc(osyl)ation, overloading of the product of polyunsaturated fatty acid peroxidation (hydroxynonenals, HNE) or cholesterol oxidation, can disrupt redox homeostasis. Collectively or individually these effects may impose stress and lead to accumulation of unfolded or misfolded proteins in brain cells. Alzheimer’s (AD), Parkinson’s and Huntington’s disease, amyotrophic lateral sclerosis and Friedreich’s ataxia are major neurological disorders associated with production of abnormally aggregated proteins and, as such, belong to the so-called “protein conformational diseases”. The pathogenic aggregation of proteins in non-native conformation is generally associated with metabolic derangements and excessive production of ROS. The “unfolded protein response” has evolved to prevent accumulation of unfolded or misfolded proteins. Recent discoveries of the mechanisms of cellular stress signaling have led to new insights into the diverse processes that are regulated by cellular stress responses. The brain detects and overcomes oxidative stress by a complex network of “longevity assurance processes” integrated to the expression of genes termed vitagenes. Heat-shock proteins are highly conserved and facilitate correct protein folding. Heme oxygenase-1, an inducible and redox-regulated enzyme, has having an important role in cellular antioxidant defense. An emerging concept is neuroprotection afforded by heme oxygenase by its heme degrading activity and tissue-specific antioxidant effects, due to its products carbon monoxide and biliverdin, which is then reduced by biliverdin reductase in bilirubin. There is increasing interest in dietary compounds that can inhibit, retard or reverse the steps leading to neurodegeneration in AD. Specifically any dietary components that inhibit inappropriate inflammation, AβP oligomerization and consequent increased apoptosis are of particular interest, with respect to a chronic inflammatory response, brain injury and β-amyloid associated pathology. Curcumin and ferulic acid, the first from the curry spice turmeric and the second a major constituent of fruit and vegetables, are candidates in this regard. Not only do these compounds serve as antioxidants but, in addition, they are strong inducers of the heat-shock response. Food supplementation with curcumin and ferulic acid are therefore being considered as a novel nutritional approach to reduce oxidative damage and amyloid pathology in AD. We review here some of the emerging concepts of pathways to neurodegeneration and how these may be overcome by a nutritional approach. Special issue dedicated to John P. Blass.  相似文献   
906.
Structure-based discovery of a new class of Bcl-xL antagonists   总被引:1,自引:0,他引:1  
Apoptosis, or programmed cell death, plays a key role in normal tissue homeostasis ensuring a proper balance between cell production and cell loss. Anti-apoptotic Bcl-2-family proteins are central regulators of the apoptotic pathway and due to their ability to confer tumor resistance to chemotherapy or radiation, have been recently validated as targets for cancer drug discovery. Since the crucial interaction between pro- and anti-apoptotic members occurs via a conserved region located on the surface of the protein, a viable way to inhibit the anti-death activity of Bcl-2 proteins is to design small molecule inhibitors that occupy this cavity. Here, we describe a structure-based approach that led to the identification of four small molecule inhibitors directed at the hydrophobic groove on the surface of the Bcl-2 family protein Bcl-xL. The compounds were characterized in a number of assays including in vitro binding using 15N-labeled protein, a displacement DELFIA assay, and a cell-based viability assay with human cancer cells.  相似文献   
907.
Molecular and Cellular Biochemistry - Aging, chronic oxidative stress, and inflammation are major pathogenic factors in the development and progression of age-related macular degeneration (AMD)...  相似文献   
908.

The natural endophytic bacterial growth migration onto a culture medium is commonly associated with unnecessary microplant discards. In micropropagation procedures, some bacteria can exude from the internal tissues of plants to colonize the culture medium and compete with the plants for nutrients, which may lead to a reduction in plant development. To find an efficient antibiotic protocol to control this bacterial growth migration onto the culture medium without affecting plant development, Eucalyptus cloeziana F.Muell. microstumps were subjected to four antibiotic treatments for 30 d. They were treated with gentamicin, ciprofloxacin, rifampicin, or Timentin®, in addition to the control treatment (antibiotic free). The effects of the antibiotics were monitored weekly, and the endophytic bacterial community structures were evaluated in two periods of plant development (15 d and 30 d).The denaturing gradient gel electrophoresis (DGGE) technique was used to compare the control and post-antibiotic treatment plant microbiological composition, to determine if the antibiotic treatment played a specific role on the endophytic bacterial community structure. The gentamicin treatment was composed of a distinct community from the control treatment. Nonetheless, the plants treated with ciprofloxacin and rifampicin manifested similar endophytic community structures compared to the control. In contrast, plants treated with Timentin® showed a specific bacterial community composition and a higher plant dry mass, number of shoots, and nutritional content. These results suggested that Timentin® treatment could be applied for 30 days to control endophytic bacterial growth migration onto the culture medium, without affecting the homeostatic balance between the bacteria and plants.

  相似文献   
909.
910.
The conversion of α-synuclein from its intrinsically disordered monomeric state into the fibrillar cross-β aggregates characteristically present in Lewy bodies is largely unknown. The investigation of α-synuclein variants causative of familial forms of Parkinson disease can provide unique insights into the conditions that promote or inhibit aggregate formation. It has been shown recently that a newly identified pathogenic mutation of α-synuclein, H50Q, aggregates faster than the wild-type. We investigate here its aggregation propensity by using a sequence-based prediction algorithm, NMR chemical shift analysis of secondary structure populations in the monomeric state, and determination of thermodynamic stability of the fibrils. Our data show that the H50Q mutation induces only a small increment in polyproline II structure around the site of the mutation and a slight increase in the overall aggregation propensity. We also find, however, that the H50Q mutation strongly stabilizes α-synuclein fibrils by 5.0 ± 1.0 kJ mol−1, thus increasing the supersaturation of monomeric α-synuclein within the cell, and strongly favors its aggregation process. We further show that wild-type α-synuclein can decelerate the aggregation kinetics of the H50Q variant in a dose-dependent manner when coaggregating with it. These last findings suggest that the precise balance of α-synuclein synthesized from the wild-type and mutant alleles may influence the natural history and heterogeneous clinical phenotype of Parkinson disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号