首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   562篇
  免费   32篇
  2024年   2篇
  2023年   2篇
  2022年   7篇
  2021年   16篇
  2020年   6篇
  2019年   18篇
  2018年   13篇
  2017年   9篇
  2016年   8篇
  2015年   25篇
  2014年   32篇
  2013年   37篇
  2012年   43篇
  2011年   37篇
  2010年   30篇
  2009年   32篇
  2008年   41篇
  2007年   35篇
  2006年   28篇
  2005年   17篇
  2004年   20篇
  2003年   20篇
  2002年   15篇
  2001年   9篇
  2000年   4篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1993年   5篇
  1992年   9篇
  1991年   3篇
  1989年   4篇
  1988年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1970年   5篇
  1964年   1篇
  1954年   1篇
排序方式: 共有594条查询结果,搜索用时 18 毫秒
11.
Abstract

A series of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline, and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives was designed, synthesised, and evaluated in?vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei). Biological results showed antiprotozoal activity with IC50 values in the µM range. In addition, the in?vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The quinoline 1c was identified as the most potent antimalarial candidate with a ratio of cytotoxic to antiparasitic activities of 97 against the P. falciparum CQ-sensitive strain 3D7. The quinazoline 3h was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 43 on T. brucei brucei strain. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma are possible targets of this kind of nitrogen heterocyclic compounds, we have also investigated stabilisation of the Plasmodium and Trypanosoma telomeric G-quadruplexes by our best compounds through FRET melting assays.  相似文献   
12.
Current evidence indicates that chemical pollutants may interfere with the homeostatic control of nutrient metabolism, thereby contributing to the increased prevalence of metabolic disorders. Bisphenol-A (BPA) is a lipophilic compound contained in plastic which is considered a candidate for impairing energy and glucose metabolism. We have investigated the impact of low doses of BPA on adipocyte metabolic functions. Human adipocytes derived from subcutaneous adipose tissue and differentiated 3T3-L1 cells were incubated with BPA, in order to evaluate the effect on glucose utilization, insulin sensitivity and cytokine secretion. Treatment with 1nM BPA significantly inhibited insulin-stimulated glucose utilization, without grossly interfering with adipocyte differentiation. Accordingly, mRNA levels of the adipogenic markers PPARγ and GLUT4 were unchanged upon BPA exposure. BPA treatment also impaired insulin-activated receptor phosphorylation and signaling. Moreover, adipocyte incubation with BPA was accompanied by increased release of IL-6 and IFN-γ, as assessed by multiplex ELISA assays, and by activation of JNK, STAT3 and NFkB pathways. Treatment of the cells with the JNK inhibitor SP600125 almost fully reverted BPA effect on insulin signaling and glucose utilization. In conclusion, low doses of BPA interfere with inflammatory/insulin signaling pathways, leading to impairment of adipose cell function.  相似文献   
13.
14.
15.
The aim of the present study was to simultaneously assess several potential predictors of outcome (co-morbidity, previous and in-hospital treatment, radiologic Brixia score) in patients with COVID-19.This retrospective cohort study included 258 consecutive patients with confirmed COVID-19 admitted to a medical ward at Montichiari Hospital, Brescia, Italy from February 28th to April 30rd, 2020. Patients had SARS-CoV-2 related pneumonia with respiratory failure, and were treated with hydroxychloroquine and lopinavir plus ritonavir. In some patients, additional treatment with tocilizumab, dexamethasone and enoxaparin was adopted. Outcomes (death or recovery) were assessed at the end of the discharge period or at the end of the follow-up (August 2020).During hospitalization, 59 patients died, while 6 died after discharge. The following variables were demonstrated to be associated with a worse prognosis: Radiologic Brixia score higher than 8, presence at baseline of hypertension, diabetes, chronic obstructive pulmonary disease, heart disease, cancer, previous treatment with ACE-inhibitors or anti-platelet drugs. Anticoagulant treatment during hospital admission with enoxaparin at a dose higher than 4000 U once daily was associated with a better prognosis.In conclusion, our study demonstrates that some co-morbidities and cardiovascular risk factors may affect prognosis. The radiologic Brixia score may be a useful tool to stratify the risk of death at baseline. Anticoagulant treatment with enoxaparin might be associated to a clinical benefit in terms of survival in patients with COVID-19.  相似文献   
16.
The Antarctic fungus Lecanicillium muscarium CCFEE-5003 was preliminary cultivated in shaken flasks to check its chitinase production on rough shrimp and crab wastes. Production on shrimp shells was much higher than that on crab shells (104.6 ± 9.3 and 48.6 ± 3.1 U/L, respectively). For possible industrial applications, bioprocess optimization was studied on shrimp shells in bioreactor using RSM to state best conditions of pH and substrate concentration. Optimization improved the production by 137% (243.6 ± 17.3). Two chitinolytic enzymes (CHI1 and CHI2) were purified and characterized. CHI1 (MW ca. 61 kDa) showed optima at pH 5.5 and 45 °C while CHI2 (MW ca. 25 kDa) optima were at pH 4.5 and 40 °C. Both enzymes maintained high activity levels at 5 °C and were inhibited by Fe++, Hg++ and Cu++. CHI2 was strongly allosamidin-sensitive. Both proteins were N-acetyl-hexosaminidases (E.C. 3.2.1.52) but showed different roles in chitin hydrolysis: CHI1 could be defined as “chitobiase” while CHI2 revealed a main “eso-chitinase” activity.  相似文献   
17.
The molecular mechanism by which the membrane-embedded FO sector of the mitochondrial ATP synthase translocates protons, thus dissipating the transmembrane protonmotive force and leading to ATP synthesis, involves the neutralization of the carboxylate residues of the c-ring. Carboxylates are thought to constitute the binding sites for ion translocation. In order to cast light on this mechanism, we exploited N,N’-dicyclohexylcarbodiimide, which covalently binds to FO c-ring carboxylates, and ionophores which selectively modulate the transmembrane electric (Δφ) and chemical (ΔpH) gradients such as valinomycin, nigericin and dinitrophenol. ATP hydrolysis was evaluated in mitochondrial preparations and/or inside-out submitochondrial particles from mussel and mammalian tissues under different experimental conditions. The experiments pointed out striking similarities between mussel and mammalian mitochondrial ATP synthase. Our results support the hypothesis that the ATP synthase of Mytilus galloprovincialis induces intersubunit torque generation and translocates H+ by coordinating the hydronium ion (H3O+) in the ion binding site of FO. Our results are consistent with the hypothesis that in mussel mitochondria the main component of the electrochemical gradient driving proton flux and ATP synthesis is Δφ. Therefore, mussel FO probably contains a small c-ring, which implies a low bioenergetic cost of making ATP as in mammals. These features which make mussel mitochondria as efficient in ATP production as mammalian ones may be especially advantageous in facultative aerobic species which intermittently exploit mitochondrial respiration to generate ATP.  相似文献   
18.

Background

Pigs play a key epidemiologic role in the ecology of influenza A viruses (IAVs) emerging from animal hosts and transmitted to humans. Between 2008 and 2010, we investigated the health risk of occupational exposure to swine influenza viruses (SIVs) in Italy, during the emergence and spread of the 2009 H1N1 pandemic (H1N1pdm) virus.

Methodology/Principal Findings

Serum samples from 123 swine workers (SWs) and 379 control subjects (Cs), not exposed to pig herds, were tested by haemagglutination inhibition (HI) assay against selected SIVs belonging to H1N1 (swH1N1), H1N2 (swH1N2) and H3N2 (swH3N2) subtypes circulating in the study area. Potential cross-reactivity between swine and human IAVs was evaluated by testing sera against recent, pandemic and seasonal, human influenza viruses (H1N1 and H3N2 antigenic subtypes). Samples tested against swH1N1 and H1N1pdm viruses were categorized into sera collected before (n. 84 SWs; n. 234 Cs) and after (n. 39 SWs; n. 145 Cs) the pandemic peak. HI-antibody titers ≥10 were considered positive. In both pre-pandemic and post-pandemic peak subperiods, SWs showed significantly higher swH1N1 seroprevalences when compared with Cs (52.4% vs. 4.7% and 59% vs. 9.7%, respectively). Comparable HI results were obtained against H1N1pdm antigen (58.3% vs. 7.7% and 59% vs. 31.7%, respectively). No differences were found between HI seroreactivity detected in SWs and Cs against swH1N2 (33.3% vs. 40.4%) and swH3N2 (51.2 vs. 55.4%) viruses. These findings indicate the occurrence of swH1N1 transmission from pigs to Italian SWs.

Conclusion/Significance

A significant increase of H1N1pdm seroprevalences occurred in the post-pandemic peak subperiod in the Cs (p<0.001) whereas SWs showed no differences between the two subperiods, suggesting a possible occurrence of cross-protective immunity related to previous swH1N1 infections. These data underline the importance of risk assessment and occupational health surveillance activities aimed at early detection and control of SIVs with pandemic potential in humans.  相似文献   
19.
In Mycobacterium tuberculosis (MTB) infection, the complex interaction of host immune system and the mycobacteria is associated with levels of cytokines production that play a major role in determining the outcome of the disease. Several single-nucleotide polymorphisms (SNPs) in cytokine genes have been associated with tuberculosis (TB) outcome. The aim of this study was to evaluate the association between previously reported SNPs IL2–330 T>G (rs2069762); IL4–590 C>T (rs2243250); IL6–174 G>C (rs1800795); IL10–592 A>C (rs1800872); IL10–1082 G>A (rs1800896); IL17A -692 C>T (rs8193036); IL17A -197 G>A (rs2275913); TNF -238 G>A (rs361525); TNF -308 G>A (rs1800629) and IFNG +874 T>A (rs2430561) and pulmonary TB (PTB) susceptibility. We conducted a case-control study in individuals from Southern Brazil who were recruited between February 2012 and October 2013 in a high incidence TB city. We performed a multiplex genotyping assay in 191 patients with PTB and 175 healthy subjects. Our results suggest a decreased risk for PTB development associated with the IL17A -197A allele (OR = 0.29; p = 0.04), AA genotype (OR = 0.12; p = 0.04) and A carrier (AG/AA) (OR = 0.29; p = 0.004) and IL6 -174C carrier (CC/CG) (OR = 0.46; p = 0.04). We could not properly analyze IL17A -692 C>T (rs8193036) and IFNG +874T>A due to genotypic inconsistencies and found no evidence of association for the IL2, IL4, IL10 and TNF polymorphisms and PTB. In conclusion, our results show a protective effect of IL17 and IL6 polymorphisms on PTB outcome in Southern Brazilian population.  相似文献   
20.
Sequencing the human genome has allowed the discovery of millions of DNA sequence variants. Sequence variations in human DNA are mainly present asSingle Nucleotide Polymorphisms (SNPs); this common form of variation is found about once every 1,000 bases in the human genome and 1.8 million SNPs have now been identified and located. The accessibility of databases of SNPs opens the possibility of studying the influence of these polymorphisms on disease risks as well as on drug responses. Numerous approaches have been set up for the identification of SNPs. In this review we describe the main techniques used for the identification of these polymorphisms. They rely on two major consequences of sequence variations: the apparition or the disappearance of restriction enzyme sites or the alteration of DNA strand hybridization due to the presence of a mismatch. Southern blotting and restriction endonucleases have allowed the development of the technique ofrestriction fragment length polymorphisms (RFLPs), now performed on PCR products. Several other approaches such as denaturing high-performance liquid chromatography or real-time PCR can detect allele differences upon re-hybridization and heteroduplex formation. However, DNA sequencing remains the obligate step for the positive identification of known or unknown SNPs. At last, the development of high-throughput methods allows a large increase in the rate of discovery of SNPs likely.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号