首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   16篇
  450篇
  2024年   3篇
  2022年   5篇
  2021年   13篇
  2020年   5篇
  2019年   14篇
  2018年   12篇
  2017年   7篇
  2016年   4篇
  2015年   16篇
  2014年   25篇
  2013年   31篇
  2012年   36篇
  2011年   27篇
  2010年   24篇
  2009年   26篇
  2008年   36篇
  2007年   25篇
  2006年   24篇
  2005年   13篇
  2004年   14篇
  2003年   15篇
  2002年   8篇
  2001年   4篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1993年   4篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   1篇
  1972年   2篇
  1970年   3篇
  1954年   1篇
排序方式: 共有450条查询结果,搜索用时 8 毫秒
91.
In addition to sporadic or maternally-inherited mutations of the mitochondrial genome, abnormalities of mtDNA can be transmitted as mendelian traits. The latter are believed to be caused by mutations in still unknown nuclear genes, which deleteriously interact with the mitochondrial genome. Two groups of mtDNA-related mendelian disorders are known: those associated with mtDNA large-scale rearrangements and those characterized by severe reduction of the mtDNA copy number. The most frequent presentation of the first group of disorders is an adult-onset encephalomyopathy, defined clinically by the syndrome of progressive external ophthalmoplegia plus, genetically by autosomal dominant transmission of the trait, and molecularly by the presence of multiple deletions of mtDNA. The second group of disorders comprises early-onset, organ-specific syndromes, associated with mtDNA depletion, that are presumably transmitted as autosomal recessive traits. Linkage analysis and search for candidate genes are two complementary strategies to clarify the molecular basis of these disorders of the nuclear-mitochondrial intergenomic signalling.  相似文献   
92.
93.
Summary The permeability and reflection behavior of cross-linked collagen films in dilute salt solutions have been investigated by measurements of net volume flow, isotopic exchange of THO and of Ca45, and osmotic pressure. Complementary measurements of swelling, membrane resistance, membrane potential, and streaming potential are presented. Measurements were performed in the pH range of 5 to 1.5, at temperatures between 25 and 52 °C, and in the presence of KCl, 10–2 m or CaCl2, 10–3 m. Under the conditions adopted, the membrane carries a net positive charge and undergoes large changes in degree of swelling (Donnan effect) and structure (crystal amorphous transition). The results indicate that when pH is lowered the filtration coefficientL p decreases in the crystalline state (pH 5 to 3), increases during the conformational transition (pH 3 to 2), and decreases in the amorphous state (pH<2). It appears thatL p is affected more by such properties as structure and porosity (i.e., mechanical resistance to flow) than properties related to the charged character of the membrane. The reflection coefficient increases when pH is lowered until pH 3, and decreases upon further lowering of pH. Such behavior is described in terms of the competition between swelling (due to both the Donnan effect and the melting transition) and fixed-charge density. Values of fixed-charge density derived on the basis of a theoretical expression for were found to be in good agreement with independent titration data.  相似文献   
94.
95.
The link between metabolic remodeling and stem cell fate is still unclear. To explore this topic, the metabolic profile of porcine vascular wall mesenchymal stem cells (pVW-MSCs) was investigated. At the first and second cell passages, pVW-MSCs exploit both glycolysis and cellular respiration to synthesize adenosine triphosphate (ATP), but in the subsequent (third to eighth) passages they do not show any mitochondrial ATP turnover. Interestingly, when the first passage pVW-MSCs are exposed to 0.1 or 10 μg/ml lipopolysaccharides (LPSs) for 4 hr, even if ATP synthesis is prevented, the spare respiratory capacity is retained and the glycolytic capacity is unaffected. In contrast, the exposure of pVW-MSCs at the fifth passage to 10 μg/ml LPS stimulates mitochondrial ATP synthesis. Flow cytometry rules out any reactive oxygen species (ROS) involvement in the LPS effects, thus suggesting that the pVW-MSC metabolic pattern is modulated by culture conditions via ROS-independent mechanisms.  相似文献   
96.
All biomaterials initiate a tissue response when implanted in living tissues. Ultimately this reaction causes fibrous encapsulation and hence isolation of the material, leading to failure of the intended therapeutic effect of the implant. There has been extensive bioengineering research aimed at overcoming or delaying the onset of encapsulation. Nanotechnology has the potential to address this problem by virtue of the ability of some nanomaterials to modulate interactions with cells, thereby inducing specific biological responses to implanted foreign materials. To this effect in the present study, we have characterised the growth of fibroblasts on nano-structured sheets constituted by BaTiO3, a material extensively used in biomedical applications. We found that sheets of vertically aligned BaTiO3 nanotubes inhibit cell cycle progression - without impairing cell viability - of NIH-3T3 fibroblast cells. We postulate that the 3D organization of the material surface acts by increasing the availability of adhesion sites, promoting cell attachment and inhibition of cell proliferation. This finding could be of relevance for biomedical applications designed to prevent or minimize fibrous encasement by uncontrolled proliferation of fibroblastic cells with loss of material-tissue interface underpinning long-term function of implants.  相似文献   
97.
Fabry disease (FD) is a hereditary metabolic disorder caused by the partial or total inactivation of α-galactosidase A (α-gal A), a lysosomal hydrolase. This inactivation is responsible for the accumulation of undegraded glycosphingolipids in the lysosomes with subsequent cellular and microvascular dysfunction. Fabry is considered a rare disease, with an incidence of 1:40,000; however, there are good reasons to believe that it is often seen but rarely diagnosed. To date, more than 600 mutations have been identified in human GLA gene that are responsible for FD.  相似文献   
98.
Bindarit, a selective inhibitor of monocyte chemotactic proteins (MCPs) synthesis, reduces neointimal formation in animal models of vascular injury and recently has been shown to inhibit in-stent late loss in a placebo-controlled phase II clinical trial. However, the mechanisms underlying the efficacy of bindarit in controlling neointimal formation/restenosis have not been fully elucidated. Therefore, we investigated the effect of bindarit on human coronary smooth muscle cells activation, drawing attention to the phenotypic modulation process, focusing on contractile proteins expression as well as proliferation and migration. The expression of contractile proteins was evaluated by western blot analysis on cultured human coronary smooth muscle cells stimulated with TNF-α (30 ng/mL) or fetal bovine serum (5%). Bindarit (100–300 µM) reduced the embryonic form of smooth muscle myosin heavy chain while increased smooth muscle α-actin and calponin in both TNF-α- and fetal bovine serum-stimulated cells. These effects were associated with the inhibition of human coronary smooth muscle cell proliferation/migration and both MCP-1 and MCP-3 production. The effect of bindarit on smooth muscle cells phenotypic switching was confirmed in vivo in the rat balloon angioplasty model. Bindarit (200 mg/Kg/day) significantly reduced the expression of the embryonic form of smooth muscle myosin heavy chain, and increased smooth muscle α-actin and calponin in the rat carodid arteries subjected to endothelial denudation. Our results demonstrate that bindarit induces the differentiated state of human coronary smooth muscle cells, suggesting a novel underlying mechanisms by which this drug inhibits neointimal formation.  相似文献   
99.
Emerin is a nuclear envelope protein whose biological function remains to be elucidated. Mutations of emerin gene cause the Emery-Dreifuss muscular dystrophy, a neuromuscular disorder also linked to mutations of lamin A/C. In this paper, we analyze the interaction between emerin and actin in differentiating mouse myoblasts. We demonstrate that emerin and lamin A/C are bound to actin at the late stages of myotube differentiation and in mature muscle. The interaction involves both nuclear alpha and beta actins and cytoplasmic actin. A serine-threonine phosphatase activity markedly increases emerin-actin binding even in cycling myoblasts. This effect is also observed with purified nuclear fractions in pull-down assay. On the other hand, active protein phosphatase 1, a serine-threonine phosphatase known to associate with lamin A/C, inhibits emerin-actin interaction in myotube extracts. These data provide evidence of a modulation of emerin-actin interaction in muscle cells, possibly through differentiation-related stimuli.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号