Skeletal muscle is a highly specialized tissue that contains two distinct mitochondria subpopulations, the subsarcolemmal (SS) and the intermyofibrillar (IMF) mitochondria. Although it is established that these mitochondrial subpopulations differ functionally in several ways, limited information exists about the proteomic differences underlying these functional differences. Therefore, the objective of this study was to biochemically characterize the SS and IMF mitochondria isolated from rat red gastrocnemius skeletal muscle. We separated the two mitochondrial subpopulations from skeletal muscle using a refined method that provides an excellent division of these unique mitochondrial subpopulations. Using proteomics of mitochondria and its subfractions (intermembrane space, matrix and inner membrane), a total of 325 distinct proteins were identified, most of which belong to the functional clusters of oxidative phosphorylation, metabolism and signal transduction. Although more gel spots were observed in SS mitochondria, 38 of the identified proteins were differentially expressed between the SS and IMF subpopulations. Compared to the SS mitochondrial, IMF mitochondria expressed a higher level of proteins associated with oxidative phosphorylation. This observation, coupled with the finding of a higher respiratory chain complex activity in IMF mitochondria, suggests a specialization of IMF mitochondria toward energy production for contractile activity. 相似文献
A puzzling population-genetic phenomenon widely reported in allozyme
surveys of marine bivalves is the occurrence of heterozygote deficits
relative to Hardy-Weinberg expectations. Possible explanations for this
pattern are categorized with respect to whether the effects should be
confined to protein-level assays or are genomically pervasive and expected
to be registered in both protein- and DNA-level assays. Anonymous nuclear
DNA markers from the American oyster were employed to reexamine the
phenomenon. In assays based on the polymerase chain reaction (PCR), two
DNA-level processes were encountered that can lead to artifactual genotypic
scorings: (a) differential amplification of alleles at a target locus and
(b) amplification from multiple paralogous loci. We describe symptoms of
these complications and prescribe methods that should generally help to
ameliorate them. When artifactual scorings at two anonymous DNA loci in the
American oyster were corrected, Hardy-Weinberg deviations registered in
preliminary population assays decreased to nonsignificant values.
Implications of these findings for the heterozygote-deficit phenomenon in
marine bivalves, and for the general development and use of PCR-based
assays, are discussed.
相似文献
Ants are powerful model systems for the study of cooperation and sociality. In this review, we discuss how recent advances in ant genomics have contributed to our understanding of the evolution and organization of insect societies at the molecular level. 相似文献
2,3-Butanediol (2,3-BDO) is of considerable importance in the chemical, plastic, pharmaceutical, cosmetic, and food industries. The main bacterial species producing this compound are considered pathogenic, hindering large-scale productivity. The species Paenibacillus brasilensis is generally recognized as safe (GRAS) and is phylogenetically similar to P. polymyxa, a species widely used for 2,3-BDO production. Here, we demonstrate, for the first time, that P. brasilensis strains produce 2,3-BDO. Total 2,3-BDO concentrations for 15 P. brasilensis strains varied from 5.5 to 7.6 g/l after 8 h incubation at 32 °C in modified YEPD medium containing 20 g/l glucose. Strain PB24 produced 8.2 g/l of 2,3-BDO within a 12-h growth period, representing a yield of 0.43 g/g and a productivity of 0.68 g/l/h. An increase in 2,3-BDO production by strain PB24 was observed using higher concentrations of glucose, reaching 27 g/l of total 2,3-BDO in YEPD containing about 80 g/l glucose within a 72-h growth period. We sequenced the genome of P. brasilensis PB24 and uncovered at least six genes related to the 2,3-BDO pathway at four distinct loci. We also compared gene sequences related to the 2,3-BDO pathway in P. brasilensis PB24 with those of other spore-forming bacteria, and found strong similarity to P. polymyxa, P. terrae, and P. peoriae 2,3-BDO-related genes. Regulatory regions upstream of these genes indicated that they are probably co-regulated. Finally, we propose a production pathway from glucose to 2,3-BDO in P. brasilensis PB24. Although the gene encoding S-2,3-butanediol dehydrogenase (butA) was found in the genome of P. brasilensis PB24, only R,R-2,3- and meso-2,3-butanediol were detected by gas chromatography under the growth conditions tested here. Our findings can serve as a basis for further improvements to the metabolic capabilities of this little-studied Paenibacillus species in relation to production of the high-value chemical 2,3-butanediol.
It has been argued that multibreed animal models should include a heterogeneous covariance structure. However, the estimation of the (co)variance components is not an easy task, because these parameters can not be factored out from the inverse of the additive genetic covariance matrix. An alternative model, based on the decomposition of the genetic covariance matrix by source of variability, provides a much simpler formulation. In this study, we formalize the equivalence between this alternative model and the one derived from the quantitative genetic theory. Further, we extend the model to include maternal effects and, in order to estimate the (co)variance components, we describe a hierarchical Bayes implementation. Finally, we implement the model to weaning weight data from an Angus × Hereford crossbred experiment.
Methods
Our argument is based on redefining the vectors of breeding values by breed origin such that they do not include individuals with null contributions. Next, we define matrices that retrieve the null-row and the null-column pattern and, by means of appropriate algebraic operations, we demonstrate the equivalence. The extension to include maternal effects and the estimation of the (co)variance components through the hierarchical Bayes analysis are then straightforward. A FORTRAN 90 Gibbs sampler was specifically programmed and executed to estimate the (co)variance components of the Angus × Hereford population.
Results
In general, genetic (co)variance components showed marginal posterior densities with a high degree of symmetry, except for the segregation components. Angus and Hereford breeds contributed with 50.26% and 41.73% of the total direct additive variance, and with 23.59% and 59.65% of the total maternal additive variance. In turn, the contribution of the segregation variance was not significant in either case, which suggests that the allelic frequencies in the two parental breeds were similar.
Conclusion
The multibreed maternal animal model introduced in this study simplifies the problem of estimating (co)variance components in the framework of a hierarchical Bayes analysis. Using this approach, we obtained for the first time estimates of the full set of genetic (co)variance components. It would be interesting to assess the performance of the procedure with field data, especially when interbreed information is limited. 相似文献
This study evaluates possible parasitic castration induced by a bopyrid isopod of the genus Parabopyrella, which parasitizes the branchial chamber of the simultaneously hermaphroditic shrimp Lysmata amboinensis. Parasitized shrimp (PS) carried embryos and produced significantly fewer larvae (mean +/- SD: 363 +/- 102; p = 0.002) than formerly parasitized shrimp (FPS) (1297 +/- 143) and unparasitized shrimp (US) paired with other US (1409 +/- 102), with PS (1362 +/- 234) or with FPS (1384 +/- 157). Starvation trials revealed no significant differences in the quality of larvae produced by PS, FPS and US paired with other US, PS and FPS. Host embryo production is only quantitatively, not qualitatively, affected, probably due to nutritional drain and/or endocrine disruption caused by the parasite. The host male sexual system remains fully functional and 'reproductive death' does not occur. The feminization of pleopods that prevents parasitized males of gonochoric species from successfully copulating seems to have no effect on L. seticaudata: pleopods are always feminized during their transition from male to simultaneous hermaphrodite phase, with adults being able to successfully fertilize broods. Parabopyrella sp. significantly affects the female sexual system of its host, but does not cause castration, as recorded for L. seticaudata parasitized by the bopyrid isopod Eophryxus lysmatae (an abdominal parasite). 相似文献
Statistical methods for computing the standard errors of the branching
points of an evolutionary tree are developed. These methods are for the
unweighted pair-group method-determined (UPGMA) trees reconstructed from
molecular data such as amino acid sequences, nucleotide sequences,
restriction-sites data, and electrophoretic distances. They were applied to
data for the human, chimpanzee, gorilla, orangutan, and gibbon species.
Among the four different sets of data used, DNA sequences for an
895-nucleotide segment of mitochondrial DNA (Brown et al. 1982) gave the
most reliable tree, whereas electrophoretic data (Bruce and Ayala 1979)
gave the least reliable one. The DNA sequence data suggested that the
chimpanzee is the closest and that the gorilla is the next closest to the
human species. The orangutan and gibbon are more distantly related to man
than is the gorilla. This topology of the tree is in agreement with that
for the tree obtained from chromosomal studies and DNA-hybridization
experiments. However, the difference between the branching point for the
human and the chimpanzee species and that for the gorilla species and the
human-chimpanzee group is not statistically significant. In addition to
this analysis, various factors that affect the accuracy of an estimated
tree are discussed.
相似文献