首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   560篇
  免费   30篇
  国内免费   1篇
  2024年   2篇
  2023年   13篇
  2022年   19篇
  2021年   31篇
  2020年   20篇
  2019年   25篇
  2018年   25篇
  2017年   21篇
  2016年   20篇
  2015年   30篇
  2014年   51篇
  2013年   42篇
  2012年   57篇
  2011年   45篇
  2010年   18篇
  2009年   23篇
  2008年   25篇
  2007年   22篇
  2006年   20篇
  2005年   17篇
  2004年   12篇
  2003年   14篇
  2002年   8篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1985年   2篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有591条查询结果,搜索用时 15 毫秒
41.
42.
Homing studies have provided tantalizing evidence that the remarkable ability of shearwaters (Procellariiformes) to pinpoint their breeding colony after crossing vast expanses of featureless open ocean can be attributed to their assembling cognitive maps of wind-borne odours but crucially, it has not been tested whether olfactory cues are actually used as a system for navigation. Obtaining statistically important samples of wild birds for use in experimental approaches is, however, impossible because of invasive sensory manipulation. Using an innovative non-invasive approach, we provide strong evidence that shearwaters rely on olfactory cues for oceanic navigation. We tested for compliance with olfactory-cued navigation in the flight patterns of 210 shearwaters of three species (Cory''s shearwaters, Calonectris borealis, North Atlantic Ocean, Scopoli''s shearwaters, C. diomedea Mediterranean Sea, and Cape Verde shearwaters, C. edwardsii, Central Atlantic Ocean) tagged with high-resolution GPS loggers during both incubation and chick rearing. We found that most (69%) birds displayed exponentially truncated scale-free (Lévy-flight like) displacements, which we show are consistent with olfactory-cued navigation in the presence of atmospheric turbulence. Our analysis provides the strongest evidence yet for cognitive odour map navigation in wild birds. Thus, we may reconcile two highly disputed questions in movement ecology, by mechanistically connecting Lévy displacements and olfactory navigation. Our approach can be applied to any species which can be tracked at sufficient spatial resolution, using a GPS logger.  相似文献   
43.
Amino acids such as leucine and its metabolite α-ketoisocaproate (KIC), are returning to be the focus of studies, mainly because of their anti-catabolic properties, through inhibition of muscle proteolysis and enhancement of protein synthesis. It is clear that these effects may counteract catabolic conditions, as well as enhance skeletal muscle mass and strength in athletes. Moreover, beta-hydroxy-beta-methylbutyrate (HMB) has been shown to produce an important effect in reducing muscle damage induced by mechanical stimuli of skeletal muscle. This review aims to describe the general scientific evidence of KIC and HMB supplementation clinical relevance, as well as their effects (e.g., increases in skeletal muscle mass and/or strength), associated with resistance training or other sports. Moreover, the possible mechanisms of cell signaling regulation leading to increases and/or sparing (during catabolic conditions) of skeletal muscle mass are discussed in detail based on the recent literature.  相似文献   
44.
In this work, the variations in the metabolic profile of blood plasma from lung cancer patients and healthy controls were investigated through NMR-based metabonomics, to assess the potential of this approach for lung cancer screening and diagnosis. PLS-DA modeling of CPMG spectra from plasma, subjected to Monte Carlo Cross Validation, allowed cancer patients to be discriminated from controls with sensitivity and specificity levels of about 90%. Relatively lower HDL and higher VLDL + LDL in the patients' plasma, together with increased lactate and pyruvate and decreased levels of glucose, citrate, formate, acetate, several amino acids (alanine, glutamine, histidine, tyrosine, valine), and methanol, could be detected. These changes were found to be present at initial disease stages and could be related to known cancer biochemical hallmarks, such as enhanced glycolysis, glutaminolysis, and gluconeogenesis, together with suppressed Krebs cycle and reduced lipid catabolism, thus supporting the hypothesis of a systemic metabolic signature for lung cancer. Despite the possible confounding influence of age, smoking habits, and other uncontrolled factors, these results indicate that NMR-based metabonomics of blood plasma can be useful as a screening tool to identify suspicious cases for subsequent, more specific radiological tests, thus contributing to improved disease management.  相似文献   
45.
The applicability of mitochondrial nad6 sequences to studies of DNA and population variability in Lepidoptera was tested in four species of economically important moths and one of wild butterflies. The genetic information so obtained was compared to that of cox1 sequences for two species of Lepidoptera. nad6 primers appropriately amplified all the tested DNA targets, the generated data proving to be as informative and suitable in recovering population structures as that of cox1. The proposal is that, to obtain more robust results, this mitochondrial region can be complementarily used with other molecular sequences in studies of low level phylogeny and population genetics in Lepidoptera.  相似文献   
46.
Aggregation of proteins and peptides has been shown to be responsible for several diseases known as amyloidoses, which include Alzheimer disease (AD), prion diseases, among several others. AD is a neurodegenerative disorder caused primarily by the aggregation of beta-amyloid peptide (Abeta). Here we describe the stabilization of small oligomers of Abeta by the use of sulfonated hydrophobic molecules such as AMNS (1-amino-5-naphthalene sulfonate); 1,8-ANS (1-anilinonaphthalene-8-sulfonate) and bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonate). The experiments were performed with either Abeta-1-42 or with Abeta-13-23, a shorter version of Abeta that is still able to form amyloid fibrils in vitro and contains amino acid residues 16-20, previously shown to be essential to peptide-peptide interaction and fibril formation. All sulfonated molecules tested were able to prevent Abeta aggregation in a concentration dependent fashion in the following order of efficacy: 1,8-ANS < AMNS < bis-ANS. Size exclusion chromatography revealed that in the presence of bis-ANS, Abeta forms a heterogeneous population of low molecular weight species that proved to be toxic to cell cultures. Since the ANS compounds all have apolar rings and negative charges (sulfonate groups), both hydrophobic and electrostatic interactions may contribute to interpeptide contacts that lead to aggregation. We also performed NMR experiments to investigate the structure of Abeta-13-23 in SDS micelles and found features of an alpha-helix from Lys(16) to Phe(20). 1H TOCSY spectra of Abeta-13-23 in the presence of AMNS displayed a chemical-shift dispersion quite similar to that observed in SDS, which suggests that in the presence of AMNS this peptide might adopt a conformation similar to that reported in the presence of SDS. Taken together, our studies provide evidence for the crucial role of small oligomers and their stabilization by sulfonate hydrophobic compounds.  相似文献   
47.
We propose an approach to integrate the theory, simulations, and experiments in protein-folding kinetics. This is realized by measuring the mean and high-order moments of the first-passage time and its associated distribution. The full kinetics is revealed in the current theoretical framework through these measurements. In the experiments, information about the statistical properties of first-passage times can be obtained from the kinetic folding trajectories of single molecule experiments (for example, fluorescence). Theoretical/simulation and experimental approaches can be directly related. We study in particular the temperature-varying kinetics to probe the underlying structure of the folding energy landscape. At high temperatures, exponential kinetics is observed; there are multiple parallel kinetic paths leading to the native state. At intermediate temperatures, nonexponential kinetics appears, revealing the nature of the distribution of local traps on the landscape and, as a result, discrete kinetic paths emerge. At very low temperatures, exponential kinetics is again observed; the dynamics on the underlying landscape is dominated by a single barrier. The ratio between first-passage-time moments is proposed to be a good variable to quantitatively probe these kinetic changes. The temperature-dependent kinetics is consistent with the strange kinetics found in folding dynamics experiments. The potential applications of the current results to single-molecule protein folding are discussed.  相似文献   
48.
The compatible solute mannosylglucosylglycerate (MGG), recently identified in Petrotoga miotherma, also accumulates in Petrotoga mobilis in response to hyperosmotic conditions and supraoptimal growth temperatures. Two functionally connected genes encoding a glucosyl-3-phosphoglycerate synthase (GpgS) and an unknown glycosyltransferase (gene Pmob_1143), which we functionally characterized as a mannosylglucosyl-3-phosphoglycerate synthase and designated MggA, were identified in the genome of Ptg. mobilis. This enzyme used the product of GpgS, glucosyl-3-phosphoglycerate (GPG), as well as GDP-mannose to produce mannosylglucosyl-3-phosphoglycerate (MGPG), the phosphorylated precursor of MGG. The MGPG dephosphorylation was determined in cell extracts, and the native enzyme was partially purified and characterized. Surprisingly, a gene encoding a putative glucosylglycerate synthase (Ggs) was also identified in the genome of Ptg. mobilis, and an active Ggs capable of producing glucosylglycerate (GG) from ADP-glucose and d-glycerate was detected in cell extracts and the recombinant enzyme was characterized, as well. Since GG has never been identified in this organism nor was it a substrate for the MggA, we anticipated the existence of a nonphosphorylating pathway for MGG synthesis. We putatively identified the corresponding gene, whose product had some sequence homology with MggA, but it was not possible to recombinantly express a functional enzyme from Ptg. mobilis, which we named mannosylglucosylglycerate synthase (MggS). In turn, a homologous gene from Thermotoga maritima was successfully expressed, and the synthesis of MGG was confirmed from GDP-mannose and GG. Based on the measurements of the relevant enzyme activities in cell extracts and on the functional characterization of the key enzymes, we propose two alternative pathways for the synthesis of the rare compatible solute MGG in Ptg. mobilis.Thermophilic and hyperthermophilic organisms, like the vast majority of other microorganisms, accumulate compatible solutes in response to water stress imposed by salt. In fact, many of the (hyper)thermophiles known were isolated from geothermal areas venting seawater (36). However, the compatible solutes of thermophilic and hyperthermophilic prokaryotes are generally different from those of their mesophilic counterparts and some, namely, di-myo-inositol-phosphate (DIP), mannosyl-di-myo-inositol-phosphate (MDIP), diglycerol phosphate, and mannosylglyceramide, are confined to organisms that grow at extremely high temperatures (19, 22, 34, 38). Mannosylglycerate (2-α-d-mannosylglycerate; MG), for example, is a common compatible solute of thermophiles and hyperhermophiles (23, 27, 38) but has also been found in mesophilic organisms, such as red algae, where it was first identified (6). It should also be noted that there is a growing awareness that compatible solutes are involved in other types of stress; trehalose, for example, plays a role in osmotic stress, heat stress, desiccation, and freezing (9). Some compatible solutes of thermophilic organisms are extremely rare and have been encountered in only one or two, generally closely related, species. Among them are mannosylglyceramide in Rhodothermus marinus, diglycerol phosphate in Archaeoglobus fulgidus, and, more recently, mannosylglucosylglycerate (α-d-1→2-mannopyranosyl-α-d-1→2-glucopyranosylglycerate; MGG) identified in Petrotoga miotherma (16, 19, 38).The species of the genus Petrotoga represent slightly thermophilic members of the generally hyperthermophilic and deep-branching bacteria of the order Thermotogales (2, 3, 31). Organisms of this genus have all been isolated from hot oilfield water (21, 25), and have an optimum temperature for growth of 55 to 60°C in medium containing NaCl in the range of 0.5 to 10% (16). In Ptg. miotherma, the levels of MGG increased during low-level osmotic adaptation, whereas glutamate and proline were used for protection against hyperosmotic stress (16). The hyperthermophilic Thermotoga spp. accumulate primarily di-myo-inositol-phosphate and mannosyl-di-myo-inositol-phosphate during osmotic adjustment or during growth at temperatures above the optimum for growth (37).The novel compatible solute MGG is a derivative of glucosylglycerate (2-α-d-glucosylglycerate; GG) identified in the free form in Erwinia chrysanthemi, in the marine cyanobacteria Prochlorococcus marinus and Synechococcus sp. PCC7002, and in the thermophilic bacterium Persephonella marina, the latter of which possesses two alternative pathways for its synthesis (8, 13, 14, 18, 37). Glucosylglycerate has also been detected in trace amounts in Mycobacterium smegmatis, where it probably is the precursor of a polysaccharide involved in the regulation of fatty acid synthesis, as well as in the polar head group of a glycolipid from Nocardia otitidiscaviarum (17, 30).Two alternative pathways for the synthesis of GG have been identified and characterized. In the two-step reaction scheme, the synthesis of GG involves the condensation of nucleoside diphosphate (NDP)-glucose and d-3-phosphoglycerate (3-PGA) into glucosyl-3-phosphoglycerate (GPG), which in turn is dephosphorylated to yield GG. Yet, in a single-step pathway, the synthesis of GG occurs via the condensation of ADP-glucose with d-glycerate (13). Similar routes to those described above also lead to the synthesis of mannosylglycerate in Rhodothermus marinus (4).Two functionally connected genes encoding an “actinobacterial”-type glucosyl-3-phosphoglycerate synthase (GpgS) and an unknown glycosyltransferase were detected in the genome of Petrotoga mobilis (12). In this study, we examine the synthesis of MGG through a phosphorylating pathway (with a phosphorylated intermediate) from 3-phosphoglycerate and UDP-glucose to the final compatible solute, in cell extracts and by functional characterization of recombinant enzymes. We also examine a second nonphosphorylating pathway (no phosphorylated intermediates) that could represent an alternative route for the synthesis of MGG in Ptg. mobilis that could lead to the direct conversion of GG and GDP-mannose to MGG. Pathway multiplicity likely reflects a crucial role for MGG in the physiology of Ptg. mobilis during stress adaptation.  相似文献   
49.
A species-specific method to detect and quantify Planktothrix agardhii was developed by combining the SYBR Green I real-time polymerase chain reaction technique with a simplified DNA extraction procedure for standard curve preparation. Newly designed PCR primers were used to amplify a specific fragment within the rpoC1 gene. Since this gene exists in single copy in the genome, it allows the direct achievement of cell concentrations. The cell concentration determined by real-time PCR showed a linear correlation with the cell concentration determined from direct microscopic counts. The detection limit for cell quantification of the method was 8?cells?μL(-1), corresponding to 32 cells per reaction. Furthermore, the real-time qPCR method described in this study allowed a successful quantification of P. agardhii from environmental water samples, showing that this protocol is an accurate and economic tool for a rapid absolute quantification of the potentially toxic cyanobacterium P. agardhii.  相似文献   
50.
The aim of this study was to investigate whether treatment with tributyrin (Tb; a butyrate prodrug) results in protection against diet-induced obesity and associated insulin resistance. C57BL/6 male mice fed a standard chow or high-fat diet were treated with Tb (2 g/kg body wt, 10 wk) and evaluated for glucose homeostasis, plasma lipid profile, and inflammatory status. Tb protected mice against obesity and obesity-associated insulin resistance and dyslipidemia without food consumption being affected. Tb attenuated the production of TNFα and IL-1β by peritoneal macrophages and their expression in adipose tissue. Furthermore, in the adipose tissue, Tb reduced the expression of MCP-1 and infiltration by leukocytes and restored the production of adiponectin. These effects were associated with a partial reversion of hepatic steatosis, reduction in liver and skeletal muscle content of phosphorylated JNK, and an improvement in muscle insulin-stimulated glucose uptake and Akt signaling. Although part of the beneficial effects of Tb are likely to be secondary to the reduction in body weight, we also found direct protective actions of butyrate reducing TNFα production after LPS injection and in vitro by LPS- or palmitic acid-stimulated macrophages and attenuating lipolysis in vitro and in vivo. The results, reported herein, suggest that Tb may be useful for the treatment and prevention of obesity-related metabolic disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号