首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93876篇
  免费   311篇
  国内免费   812篇
  2023年   6篇
  2021年   8篇
  2020年   6篇
  2019年   14篇
  2018年   11853篇
  2017年   10681篇
  2016年   7464篇
  2015年   616篇
  2014年   309篇
  2013年   327篇
  2012年   4248篇
  2011年   12850篇
  2010年   12031篇
  2009年   8257篇
  2008年   9824篇
  2007年   11383篇
  2006年   300篇
  2005年   545篇
  2004年   995篇
  2003年   1068篇
  2002年   816篇
  2001年   269篇
  2000年   167篇
  1999年   32篇
  1998年   18篇
  1997年   35篇
  1996年   15篇
  1994年   7篇
  1993年   35篇
  1992年   26篇
  1991年   46篇
  1990年   12篇
  1989年   10篇
  1988年   18篇
  1987年   19篇
  1985年   8篇
  1984年   11篇
  1983年   23篇
  1982年   5篇
  1981年   11篇
  1979年   9篇
  1975年   8篇
  1972年   246篇
  1971年   274篇
  1970年   5篇
  1965年   14篇
  1962年   24篇
  1956年   5篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Natural polyphenol compounds are often good antioxidants, but they also cause damage to cells through more or less specific interactions with proteins. To distinguish antioxidant activity from cytotoxic effects we have tested four structurally related hydroxyflavones (baicalein, mosloflavone, negletein, and 5,6-dihydroxyflavone) at very low and physiologically relevant levels, using two different cell lines, L-6 myoblasts and THP-1 monocytes. Measurements using intracellular fluorescent probes and electron paramagnetic resonance spectroscopy in combination with cytotoxicity assays showed strong antioxidant activities for baicalein and 5,6-dihydroxyflavone at picomolar concentrations, while 10 nM partially protected monocytes against the strong oxidative stress induced by 200 µM cumene hydroperoxide. Wide range dose-dependence curves were introduced to characterize and distinguish the mechanism and targets of different flavone antioxidants, and identify cytotoxic effects which only became detectable at micromolar concentrations. Analysis of these dose-dependence curves made it possible to exclude a protein-mediated antioxidant response, as well as a mechanism based on the simple stoichiometric scavenging of radicals. The results demonstrate that these flavones do not act on the same radicals as the flavonol quercetin. Considering the normal concentrations of all the endogenous antioxidants in cells, the addition of picomolar or nanomolar levels of these flavones should not be expected to produce any detectable increase in the total cellular antioxidant capacity. The significant intracellular antioxidant activity observed with 1 pM baicalein means that it must be scavenging radicals that for some reason are not eliminated by the endogenous antioxidants. The strong antioxidant effects found suggest these flavones, as well as quercetin and similar polyphenolic antioxidants, at physiologically relevant concentrations act as redox mediators to enable endogenous antioxidants to reach and scavenge different pools of otherwise inaccessible radicals.  相似文献   
992.
993.
Glioblastomas are the most frequent and aggressive intracranial neoplasms in humans, and despite advances and the introduction of the alkylating agent temozolomide in therapy have improved patient survival, resistance mechanisms limit benefits. Recent studies support that glioblastoma stem-like cells (GSCs), a cell subpopulation within the tumour, are involved in the aberrant expansion and therapy resistance properties of glioblastomas, through still unclear mechanisms. Emerging evidence suggests that sphingosine-1-phosphate (S1P) a potent onco-promoter able to act as extracellular signal, favours malignant and chemoresistance properties in GSCs. Notwithstanding, the origin of S1P in the GSC environment remains unknown. We investigated S1P metabolism, release, and role in cell survival properties of GSCs isolated from either U87-MG cell line or a primary culture of human glioblastoma. We show that both GSC models, grown as neurospheres and expressing GSC markers, are resistant to temozolomide, despite not expressing the DNA repair protein MGMT, a major contributor to temozolomide-resistance. Pulse experiments with labelled sphingosine revealed that both GSC types are able to rapidly phosphorylate the long-chain base, and that the newly produced S1P is efficiently degraded. Of relevance, we found that S1P was present in GSC extracellular medium, its level being significantly higher than in U87-MG cells, and that the extracellular/intracellular ratio of S1P was about ten-fold higher in GSCs. The activity of sphingosine kinases was undetectable in GSC media, suggesting that mechanisms of S1P transport to the extracellular environment are constitutive in GSCs. In addition we found that an inhibitor of S1P biosynthesis made GSCs sensitive to temozolomide (TMZ), and that exogenous S1P reverted this effect, thus involving extracellular S1P as a GSC survival signal in TMZ resistance. Altogether our data implicate for the first time GSCs as a pivotal source of extracellular S1P, which might act as an autocrine/paracrine signal contributing to their malignant properties.  相似文献   
994.
The optical response of lanthanum hexaboride (LaB6) nanoparticles has been investigated by both theoretically and experimentally. The LaB6 nanoparticles obtained by solid-state reaction could avoid serious surface oxidization and exhibit excellent optical performance. The discrete dipole approximation (DDA) has been used to investigate the optical response of LaB6 nanoparticles with different sizes and different shapes. The calculation results coincide with the experimental results and reveal that the largest extinction peak value appears at 60 nm for cubic particles and 40 nm for spherical particles, respectively. Our calculation results show that the existence of the largest extinction peak value is not only due to the surface oxides but also relate to the particle shape of LaB6 compound. In addition, the LaB6 nanoparticles with cubic and spherical shapes exhibit different optical responses, and the cubic particles exhibit stronger near infrared (NIR) extinction than spherical particles. With increasing particle size, the extinction peak value of spherical particle decreases more rapidly than that of cubic ones.  相似文献   
995.
We report the synthesis and the characterization of core-shell Au@Ag nanorods through reduction by the wet chemical method. UV-visible absorption spectra of core-shell Au@Ag nanorods demonstrate the longitudinal mode of localized surface plasmon resonances (LSPRs) can be tailored from 724 to 786 nm by controlling the thickness of the silver shell, as is assessed by transmission electron microscope (TEM). Furthermore, the tunable and well-controlled LSPRs of core-shell Au@Ag nanorods are also investigated by numerical simulation using the finite difference time domain (FDTD) method, which strongly supports the experimental observations. The growth mechanism for core-shell Au@Ag nanorods is proposed, according to experimental observations and numerical calculations.  相似文献   
996.
A graphene-based cylindrical hybrid surface plasmon polariton waveguide, composed of a silicon nanowire core surrounded by a silica layer and then a graphene layer, is investigated using the finite-difference time-domain method. The analytical solutions and the numerical simulation show that an ultra-small mode area and a large propagation length can be achieved with this waveguide. Utilizing the perturbation theory of coupled mode, we demonstrate that the six lowest-order coupling modes originate from the coupling of the three lowest-order single-waveguide modes, and the m?=?1 order yy-coupling mode possesses the maximum coupling length and the minimum crosstalk. This waveguide can be used for photonic integrated circuits in the mid-infrared range.  相似文献   
997.
We introduce a Y-shaped gap into a silver disk to break the structure symmetry which can be looked as a loop-linked structure. Magnetic resonances are excited by incident light when incident electric field is parallel to the trimer plane. Fano resonance is generated by the coupling between bright electric mode and dark magnetic mode. These resonances can be adjusted by tuning the gap size, the radius of trimer, and the position of Y-shaped gap. The extinction cross section of the structure is calculated with the finite element method (FEM). The maximum figure of merit (FOM) is 37.8. Both the magnetic and electric field are greatly enhanced at the Fano dip and the magnetic resonance peak.  相似文献   
998.
We present a method to theoretically achieve multispectral narrowband light absorption in common metal-dielectric-metal nanocavities. Polarization-independent and wide-angle multi-band light absorption with absorbance up to 99 % is achieved owing to the excitation of multiple localized plasmon cavity modes. Strong interactions between plasmon resonances and photonic modes are further introduced for achieving sharp absorption spectrum with sub-10-nm bandwidth via a high-index dielectric spacer with a thickness exceeding λ/2. These findings can offer new perspectives for multispectral nano-optics devices including perfect light absorbers and subtractive polychromatic filters.  相似文献   
999.
Encapsulation technologies using proteins or polysaccharides can be employed with the purpose of solubilizing and protecting carotenoids. However, information on the role of protein and polysaccharide interactions is still slightly limited. The aim of this work was to investigate the effect of β-carotene linked to protein β-lactoglobulin (BLG) in the interaction carboxymethylcellulose (CMC) using isothermal titration calorimetry (ITC). Firstly, BLG and CMC interaction was assessed by means of turbidity analysis. Based on the results of turbidity, the thermodynamic profile of BLG-CMC complexes at pH 4.0 was obtained using ITC analysis at 25 °C. Afterward, it was evaluated the effect of a thermal treatment applied to the BLG (68 °C for 50 min) in the interaction with CMC also using ITC and circular dichroism (CD). ITC and CD analysis showed that the heat treatment applied on BLG did not cause changes in molecular interactions. The binding isotherm of BLG-CMC complexes incorporated with β-carotene showed an increase in the molar ratio and a slight decrease in enthalpy of the system. Incorporation of β-carotene in the system did not significantly affect the BLG and CMC interaction, suggesting this system can be applied in food application as encapsulation.  相似文献   
1000.
The flow behavior of native corn and potato starch granule suspensions prepared in a concentrated sucrose solution has been investigated. Measurements were performed using a rotational rheometer with a concentric cylinder geometry. Starch suspensions were dilute to semi-concentrated (1 % to 25 % by volume). Shear and dynamic viscosity were measured by shear flow and dynamic oscillatory testing at 20, 50 and 80 °C. The starch suspensions exhibited essentially Newtonian behavior at all solid contents, although at higher solid volume fractions there was evidence of slight shear thickening. The relative viscosity of suspensions increased with increasing starch granule content, and the data conformed well to Maron-Pierce’s equation. An increase in maximum packing fraction and gravitational depletion of the starch granules with increasing temperature resulted in lower relative viscosities at higher temperatures. Also, the relative viscosities of potato starch granule suspensions with bigger, more oval and anisometric particles were lower than those of corn starch suspensions where granules were closer to sphericity but were angular in shape. Oscillatory shear testing results showed the presence of viscoelastic properties at intermediate solid volume fractions at low frequencies; in addition, the relative shear viscosity was higher than the relative dynamic viscosity, probably due to the formation of shear-induced structures during the shear flow test.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号