首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   508篇
  免费   63篇
  2023年   2篇
  2022年   2篇
  2021年   7篇
  2019年   9篇
  2018年   9篇
  2017年   17篇
  2016年   18篇
  2015年   14篇
  2014年   12篇
  2013年   41篇
  2012年   39篇
  2011年   42篇
  2010年   15篇
  2009年   15篇
  2008年   33篇
  2007年   21篇
  2006年   19篇
  2005年   21篇
  2004年   17篇
  2003年   18篇
  2002年   9篇
  2001年   17篇
  2000年   22篇
  1999年   18篇
  1998年   2篇
  1997年   7篇
  1996年   4篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   13篇
  1991年   16篇
  1990年   10篇
  1989年   13篇
  1988年   5篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   5篇
  1983年   6篇
  1981年   3篇
  1979年   3篇
  1978年   2篇
  1973年   1篇
  1972年   1篇
  1970年   3篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1962年   1篇
排序方式: 共有571条查询结果,搜索用时 953 毫秒
51.
Zea mays is cultivated in the Mediterranean regions where summer drought may lead to photoinhibition when irrigation is not available. In this work the response of maize to water stress was evaluated by gas exchange measurements at the canopy and leaf level. Leaf gas exchange was assessed before, during and after water stress, while canopy turbulent fluxes of mass and energy were performed on a continuous basis. In the early growth period, a linear increment of net ecosystem photosynthetic rate (P NE) to incoming of photosynthetic photon flux density (PPFD) was found and net leaf photosynthetic rate (P NL) showed the tendency to saturate under high irradiance. During water stress, the relationship between P NE and PPFD became curvilinear and both P NE and P NL saturated in a range between 1,000 and 1,500 μmol (photons) m−2 s−1. Leaf water potential (ψl) dropped from −1.50 to −1.88 MPa during water stress, indicating that leaf and canopy gas exchanges were limited by stomatal conductance. With the restoration of irrigation, P NE, P NL and ψl showed a recovery, and P NE and P NL reached the highest values of whole study period. Leaf area index (LAI) reached a value of 3.0 m2 m−2. The relationship between P NE and PPFD remained curvilinear and P NE values were lower than those of a typical well-irrigated maize crop. The recovery in P NE and P NL after stress, and ψl values during stress indicate that the photosynthetic apparatus was not damaged while soil moisture stress after-effects resulted in a sub-optimal LAI values, which in turn depressed P NE.  相似文献   
52.
NF-kappaB/Rel factors control programmed cell death (PCD), and this control is crucial to oncogenesis, cancer chemoresistance, and antagonism of tumor necrosis factor (TNF) alpha-induced killing. With TNFalpha, NF-kappaB-mediated protection involves suppression of the c-Jun-N-terminal kinase (JNK) cascade, and we have identified Gadd45beta, a member of the Gadd45 family, as a pivotal effector of this activity of NF-kappaB. Inhibition of TNFalpha-induced JNK signaling by Gadd45beta depends on direct targeting of the JNK kinase, MKK7/JNKK2. The mechanism by which Gadd45beta blunts MKK7, however, is unknown. Here we show that Gadd45beta is a structured protein with a predicted four-stranded beta-sheet core, five alpha-helices, and two acidic loops. Association of Gadd45beta with MKK7 involves a network of interactions mediated by its putative helices alpha3 and alpha4 and loops 1 and 2. Whereas alpha3 appears to primarily mediate docking to MKK7, loop 1 and alpha4-loop 2 seemingly afford kinase inactivation by engaging the ATP-binding site and causing conformational changes that impede catalytic function. These data provide a basis for Gadd45beta-mediated blockade of MKK7, and ultimately, TNFalpha-induced PCD. They also have important implications for treatment of widespread diseases.  相似文献   
53.
The morphogenetic events leading to the transendothelial passage of lymphoid and tumoral cells are analyzed in light of a very recent and global theory of intercellular communication designated as the Triune Information Network (TIN). The TIN system is based on the assumption that cell-cell interactions primarily occur through cell surface informations or topobiological procesess, whose mechanisms rely upon expression of adhesion molecules, and are regulated by an array of locally-borne (autocrine/paracrine signals and autonomic inputs) and distantly-borne (endocrine secretions) messages. The final aim of the TIN is to control homeostatic functions crucial for the organism survival, like morphogenesis. Knowledge of the TIN signals involved in lymphoid and tumoral cell intravasation might offer a new perspetive to study the mechanisms of tumor immunity. Recognition of tumor target cells by immune cytotoxic effectors, in fact, can be considered a notable case of TIN-mediated cell to cell interaction. In particular, Natural Killer (NK) cells play a role in the cell-mediated control of tumor growth and metastatic spreading. Cell targeting and killing are dependent on the different NK cell receptors and on the efficacy of NK cells after cytokine and monoclonal antibody administration in cancer therapy. Since efficacy of NK cell-based immunotheraphy has been proven in KIR-mismatch regimens or in TRAIL-dependent apoptosis, the ability to manipulate the balance of activating and inhibitory receptors on NK cells and of their cognate ligands as well as the sensitivity of tumor cells to apoptosis, opens new perspectives for NK cell based immunotherapy.  相似文献   
54.
Combretastatin A-4 (CA-4), a natural stilbenoid isolated from Combretum caffrum, is a new vascular targeting agent (VTA) known for its antitumor activity due to its anti-tubulin properties. We investigated the molecular mechanisms leading to cell death in non-small cell lung cancer H460 cells induced by natural (CA-4) and synthetic stilbenoids (ST2151) structurally related to CA-4. We found that both compounds induced depolymerization and rearrangement of spindle microtubules, as well as an increasingly aberrant organization of metaphase chromosomes in a dose- and time-dependent manner. Prolonged exposition to ST2151 led cells to organize multiple sites of tubulin repolymerization, whereas tubulin repolymerization was observed only after CA-4 washout. H460 cells were arrested at a pro-metaphase stage, with condensed chromosomes and a triggered spindle assembly checkpoint, as evaluated by kinetochore localization of Bub1 and Mad1 antibodies. Persistent checkpoint activation led to mitochondrial membrane permeabilization (MMP) alterations, cytochrome c release, activation of caspase-9 and -3, PARP cleavage and DNA fragmentation. On the other hand, caspase-2, and -8 were not activated by the drug treatment. The ability of cells to reassemble tubulin in the presence of an activated checkpoint may be responsible for ST2151-induced multinucleation, a recognized sign of mitotic catastrophe. In conclusion, we believe that discovery of new agents able to trigger mitotic catastrophe cell death as a result of mitotic block and prolonged spindle checkpoint activation is particularly worthwhile, considering that tumor cells have a high proliferative rate and mitotic failure occurs irrespective of p53 status. Electronic Supplementary Material Supplementary material is available in the online version of this article at . Ilio Vitale and Antonio Antoccia contribuited equally to this work.  相似文献   
55.
Fusarium wilt caused by Fusarium oxysporum f.sp. melonis (FOM) is a devastating disease of melon worldwide. Pathogenicity tests performed with F. oxysporum isolates obtained from Italian melon‐growing areas allowed to identify thirty‐four FOM isolates and the presence of all four races. The aims of this work were to examine genetic relatedness among FOM isolates by race determination and to perform phylogenetic analyses of identified FOM races including also other formae speciales of F. oxysporum of cucurbits. Results showed that FOM race 1,2 was the most numerous with a total of eighteen isolates, while six and nine isolates were identified as race 0 and 1, respectively, and just one isolate was assigned to race 2. Phylogenetic analysis was performed by random amplified polymorphic DNA (RAPD) profiling and by translation elongation factor‐1α (TEF‐1α) sequencing. The analysis of RAPD profiles separated FOM races into two distinct clades. Clade 1, which included races 0, 1 and 1,2, was further divided into ‘subclade a’ which grouped almost all race 1,2 isolates, and into ‘subclade b’ which included race 0 and 1 isolates. Clade 2 comprised only race 2 isolates. The phylogenetic analysis based on TEF‐1α separated FOM from the other formae speciales of F. oxysporum. Also with TEF‐1α analysis, FOM races 0, 1 and 1,2 isolates grouped in one single clade clearly separated from FOM race 2 isolates which grouped closer to F. oxysporum f.sp. cucumerinum. RAPD technique was more effective than TEF‐1α in differentiating FOM race 1,2 isolates from those belonging to the closely related races 0 and 1. Both phylogenetic analyses supported the close relationship between the three different FOM races which might imply the derivation from one another and the different origin of FOM race 2.  相似文献   
56.
Annexin A2, a calcium-, actin-, and lipid-binding protein involved in exocytosis, mediates the formation of lipid microdomains required for the structural and spatial organization of fusion sites at the plasma membrane. To understand how annexin A2 promotes this membrane remodeling, the involvement of cortical actin filaments in lipid domain organization was investigated. 3D electron tomography showed that cortical actin bundled by annexin A2 connected docked secretory granules to the plasma membrane and contributed to the formation of GM1-enriched lipid microdomains at the exocytotic sites in chromaffin cells. When an annexin A2 mutant with impaired actin filament–bundling activity was expressed, the formation of plasma membrane lipid microdomains and the number of exocytotic events were decreased and the fusion kinetics were slower, whereas the pharmacological activation of the intrinsic actin-bundling activity of endogenous annexin A2 had the opposite effects. Thus, annexin A2–induced actin bundling is apparently essential for generating active exocytotic sites.  相似文献   
57.
Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. ARF6 (ADP-ribosylation factor 6) is a small GTPase implicated in exocytosis, but its downstream effectors remain elusive in this process. We combined biochemical, functional, and microscopy-based methods to show that ARF6 is present in human sperm, localizes to the acrosomal region, and is required for calcium and diacylglycerol-induced exocytosis. Results from pulldown assays show that ARF6 exchanges GDP for GTP in sperm challenged with different exocytic stimuli. Myristoylated and guanosine 5′-3-O-(thio)triphosphate (GTPγS)-loaded ARF6 (active form) added to permeabilized sperm induces acrosome exocytosis even in the absence of extracellular calcium. We explore the ARF6 signaling cascade that promotes secretion. We demonstrate that ARF6 stimulates a sperm phospholipase D activity to produce phosphatidic acid and boosts the synthesis of phosphatidylinositol 4,5-bisphosphate. We present direct evidence showing that active ARF6 increases phospholipase C activity, causing phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate-dependent intra-acrosomal calcium release. We show that active ARF6 increases the exchange of GDP for GTP on Rab3A, a prerequisite for secretion. We propose that exocytic stimuli activate ARF6, which is required for acrosomal calcium efflux and the assembly of the membrane fusion machinery. This report highlights the physiological importance of ARF6 as a key factor for human sperm exocytosis and fertilization.  相似文献   
58.
Question: What is the effect of climate change on tree species abundance and distribution in the Italian peninsula? Location: Italian peninsula. Methods: Regression tree analysis, Random Forest, generalized additive model and geostatistical methods were compared to identify the best model for quantifying the effect of climate change on tree species distribution and abundance. Future potential species distribution, richness, local colonization, local extinction and species turnover were modelled according to two scenarios (A2 and B1) for 2050 and 2080. Results: Robust Random Forest proved to be the best statistical model to predict the potential distribution of tree species abundance. Climate change could lead to a shift in tree species distribution towards higher altitudes and a reduction of forest cover. Pinus sylvestris and Tilia cordata may be considered at risk of local extinction, while the other species could find potential suitable areas at the cost of a rearrangement of forest community composition and increasing competition. Conclusions: Geographical and topographical regional characteristics can have a noticeable influence on the impact of predicted climate change on forest ecosystems within the Mediterranean basin. It would be highly beneficial to create a standardized and harmonized European forest inventory in order to evaluate, at high resolution, the effect of climate change on forest ecosystems, identify regional differences and develop specific adaptive management strategies and plans.  相似文献   
59.
The improper distribution of chromosomes during mitosis compromises cellular functions and can reduce cellular fitness or contribute to malignant transformation. As a countermeasure, higher eukaryotes have developed strategies for eliminating mitosis-incompetent cells, one of which is mitotic catastrophe. Mitotic catastrophe is driven by a complex and poorly understood signalling cascade but, from a functional perspective, it can be defined as an oncosuppressive mechanism that precedes (and is distinct from) apoptosis, necrosis or senescence. Accordingly, the disruption of mitotic catastrophe precipitates tumorigenesis and cancer progression, and its induction constitutes a therapeutic endpoint.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号