首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   66篇
  国内免费   1篇
  2022年   8篇
  2021年   24篇
  2020年   11篇
  2019年   16篇
  2018年   13篇
  2017年   7篇
  2016年   19篇
  2015年   34篇
  2014年   34篇
  2013年   54篇
  2012年   40篇
  2011年   45篇
  2010年   28篇
  2009年   31篇
  2008年   42篇
  2007年   41篇
  2006年   51篇
  2005年   27篇
  2004年   21篇
  2003年   22篇
  2002年   20篇
  2001年   15篇
  2000年   11篇
  1999年   12篇
  1998年   8篇
  1997年   5篇
  1996年   7篇
  1995年   5篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   7篇
  1988年   12篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1981年   3篇
  1979年   5篇
  1978年   3篇
  1975年   12篇
  1972年   4篇
  1970年   6篇
  1969年   3篇
  1968年   3篇
  1966年   4篇
  1964年   5篇
  1960年   5篇
排序方式: 共有776条查询结果,搜索用时 734 毫秒
101.
Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3−/− mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis.  相似文献   
102.
103.
An indigenous Bacillus thuringiensis strain B.t.LDC-391 producing cytocidal proteins against human colon cancer cell line, HCT-116, was subjected to phenotypic and genotypic characterization to evaluate its relatedness to B.anthracis. The morphological features of this strain were meta-analyzed with data of other parasporin and insecticidal protein producing Bacillus thuringiensis strains. The conventional biochemical analysis and antibiotic sensitivity test proved it as an ampicillin resistant which is a salient feature, absent in B.anthracis Ames. PCR analysis showed the absence of cyt and parasporin related genes in the genome of B.t.LDC-391. But the strain was positive for cap gene. The sequencing and bio-informatic analysis of cap gene and 16S rDNA of B.t.LDC-391 placed it closer to B.thuringiensis and revealed significant divergence from that of any B.anthracis strain. However our strain lacked β- hemolysis on human erythrocytes which is a common feature of B.anthracis strains and parasporin producers.  相似文献   
104.
Li F  Lu J  Wu CY  Kaur C  Sivakumar V  Sun J  Li S  Ling EA 《Journal of neurochemistry》2008,106(5):2093-2105
Microglial cells are endowed with different potassium ion channels but their expression and specific functions have remained to be fully clarified. This study has shown Kv1.2 expression in the amoeboid microglia in the rat brain between 1 (P1) and 10 (P10) days of age. Kv1.2 expression was localized in the ramified microglia at P14 and was hardly detected at P21. In postnatal rats exposed to hypoxia, Kv1.2 immunoreactivity in microglia was markedly enhanced. Quantitative RT-PCR analysis confirmed Kv1.2 mRNA expression in microglial cells in vitro . It was further shown that Kv1.2 and protein expression coupled with that of interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α) was significantly increased when the cells were subjected to hypoxia. The same increase was observed in cells exposed to adenosine 5'-triphosphate (ATP) and lipopolysaccharide (LPS). Concomitantly, the intracellular potassium concentration decreased significantly. Blockade of Kv1.2 channel with rTityustoxin-Kα (TsTx) resulted in partial recovery of intracellular potassium concentration accompanied by a reduced expression of IL-1β and TNF-α mRNA and protein expression and intracellular reactive oxygen species (ROS) production. We conclude that Kv1.2 in microglia modulates IL-1β and TNF-α expression and ROS production probably by regulating the intracellular potassium concentration.  相似文献   
105.
Wajapeyee N  Serra RW  Zhu X  Mahalingam M  Green MR 《Cell》2008,132(3):363-374
Expression of an oncogene in a primary cell can, paradoxically, block proliferation by inducing senescence or apoptosis through pathways that remain to be elucidated. Here we perform genome-wide RNA-interference screening to identify 17 genes required for an activated BRAF oncogene (BRAFV600E) to block proliferation of human primary fibroblasts and melanocytes. Surprisingly, we find a secreted protein, IGFBP7, has a central role in BRAFV600E-mediated senescence and apoptosis. Expression of BRAFV600E in primary cells leads to synthesis and secretion of IGFBP7, which acts through autocrine/paracrine pathways to inhibit BRAF-MEK-ERK signaling and induce senescence and apoptosis. Apoptosis results from IGFBP7-mediated upregulation of BNIP3L, a proapoptotic BCL2 family protein. Recombinant IGFBP7 (rIGFBP7) induces apoptosis in BRAFV600E-positive human melanoma cell lines, and systemically administered rIGFBP7 markedly suppresses growth of BRAFV600E-positive tumors in xenografted mice. Immunohistochemical analysis of human skin, nevi, and melanoma samples implicates loss of IGFBP7 expression as a critical step in melanoma genesis.  相似文献   
106.
The statins, hydroxy-3-methylglutaryl-CoA reductase inhibitors that lower serum cholesterol, exhibit myriad clinical benefits, including enhanced vascular integrity. One potential mechanism underlying increased endothelial cell (EC) barrier function is inhibition of geranylgeranylation, a covalent modification enabling translocation of the small GTPases Rho and Rac to the cell membrane. While RhoA inhibition attenuates actin stress fiber formation and promotes EC barrier function, Rac1 inhibition at the cell membrane potentially prevents activation of NADPH oxidase and subsequent generation of superoxides known to induce barrier disruption. We examined the relative regulatory effects of simvastatin on RhoA, Rac1, and NADPH oxidase activities in the context of human pulmonary artery EC barrier protection. Confluent EC treated with simvastatin demonstrated significantly decreased thrombin-induced FITC-dextran permeability, a reflection of vascular integrity, which was linked temporally to simvastatin-mediated actin cytoskeletal rearrangement. Compared with Rho inhibition alone (Y-27632), simvastatin afforded additional protection against thrombin-mediated barrier dysfunction and attenuated LPS-induced EC permeability and superoxide generation. Statin-mediated inhibition of both Rac translocation to the cell membrane and superoxide production were attenuated by geranylgeranyl pyrophosphate (GGPP), indicating that these effects are due to geranylgeranylation inhibition. Finally, thrombin-induced EC permeability was modestly attenuated by reduced Rac1 expression (small interfering RNA), whereas these effects were made more pronounced by simvastatin pretreatment. Together, these data suggest EC barrier protection by simvastatin is due to dual inhibitory effects on RhoA and Rac1 as well as the attenuation of superoxide generation by EC NADPH oxidase and contribute to the molecular mechanistic understanding of the modulation of EC barrier properties by simvastatin.  相似文献   
107.
108.
Adiponectin is an adipose tissue specific protein that is decreased in subjects with obesity and type 2 diabetes. The objective of the present study was to examine whether variants in the regulatory regions of the adiponectin gene contribute to type 2 diabetes in Asian Indians. The study comprised of 2,000 normal glucose tolerant (NGT) and 2,000 type 2 diabetic, unrelated subjects randomly selected from the Chennai Urban Rural Epidemiology Study (CURES), in southern India. Fasting serum adiponectin levels were measured by radioimmunoassay. We identified two proximal promoter SNPs (−11377C→G and −11282T→C), one intronic SNP (+10211T→G) and one exonic SNP (+45T→G) by SSCP and direct sequencing in a pilot study (n = 500). The +10211T→G SNP alone was genotyped using PCR-RFLP in 4,000 study subjects. Logistic regression analysis revealed that subjects with TG genotype of +10211T→G had significantly higher risk for diabetes compared to TT genotype [Odds ratio 1.28; 95% Confidence Interval (CI) 1.07–1.54; P = 0.008]. However, no association with diabetes was observed with GG genotype (P = 0.22). Stratification of the study subjects based on BMI showed that the odds ratio for obesity for the TG genotype was 1.53 (95%CI 1.3–1.8; P < 10−7) and that for GG genotype, 2.10 (95% CI 1.3–3.3; P = 0.002). Among NGT subjects, the mean serum adiponectin levels were significantly lower among the GG (P = 0.007) and TG (P = 0.001) genotypes compared to TT genotype. Among Asian Indians there is an association of +10211T→G polymorphism in the first intron of the adiponectin gene with type 2 diabetes, obesity and hypoadiponectinemia.  相似文献   
109.
Plants respond to pathogens and abiotic stresses by transient increases in the production of reactive oxygen species (ROS) and ion fluxes, which activate both local programmed cell death and systemic increases in stress- and pathogen-resistance. The present essay explores the emerging complexity of the multiple roles that ROS play in intra- and intercellular communication in both stressed and unstressed organisms.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号