首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1291篇
  免费   109篇
  国内免费   1篇
  1401篇
  2023年   8篇
  2022年   20篇
  2021年   41篇
  2020年   10篇
  2019年   26篇
  2018年   24篇
  2017年   12篇
  2016年   34篇
  2015年   77篇
  2014年   80篇
  2013年   74篇
  2012年   121篇
  2011年   113篇
  2010年   54篇
  2009年   39篇
  2008年   82篇
  2007年   79篇
  2006年   65篇
  2005年   67篇
  2004年   51篇
  2003年   54篇
  2002年   60篇
  2001年   10篇
  2000年   9篇
  1999年   14篇
  1998年   11篇
  1997年   8篇
  1996年   8篇
  1995年   7篇
  1993年   5篇
  1992年   11篇
  1991年   10篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1986年   3篇
  1985年   5篇
  1984年   9篇
  1982年   8篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1976年   5篇
  1974年   3篇
  1973年   3篇
  1970年   6篇
  1969年   3篇
  1967年   4篇
  1945年   2篇
  1929年   3篇
排序方式: 共有1401条查询结果,搜索用时 46 毫秒
81.
82.
OBJECTIVE: To establish the cut-off values of GH measured by immunofluorometric assay, a more sensitive and specific assay, in normal prepubertal children and compare their values with those of proven GH-deficient patients. METHODS: 30 normal children (20 males) and 26 patients with known causes of GH deficiency were submitted to the clonidine test and their GH values were compared. A powdered clonidine tablet (0.1 mg/m(2)) was given orally and blood samples for GH measurements were drawn at times -30, 0, 60, 90 and 120 min. RESULTS: GH peak values presented a wide variation ranging from 1.7 to 25 micro g/l (mean +/- SD = 12.87 +/- 5.8 micro g/l) in the normal group. The cut-off values for the 5th and 10th percentiles of the distribution curve were 3.3 and 5.5 micro g/l, respectively. In the GH deficiency group, maximum GH levels after clonidine stimulation ranged from <0.1 to 2.1 micro g/l (0.56 +/- 0.58 micro g/l). CONCLUSIONS: The cut-off values obtained with the immunofluorometric method are lower than the ones obtained by radioimmunoassay. We suggest a cut-off value of 3.3 micro g/l (5th percentile) that ensures 100% of sensitivity along with 93% of specificity to exclude the diagnosis of GH deficiency when using this immunofluorometric method.  相似文献   
83.
84.
Ubiquitination plays a key role in trafficking of the epithelial Na+ channel (ENaC). Previous work indicated that ubiquitination enhances ENaC endocytosis and sorting to lysosomes for degradation. Moreover, a defect in ubiquitination causes Liddle syndrome, an inherited form of hypertension. In this work, we identified a role for USP8 in the control of ENaC ubiquitination and trafficking. USP8 increased ENaC current in Xenopus oocytes and collecting duct epithelia and enhanced ENaC abundance at the cell surface in HEK 293 cells. This resulted from altered endocytic sorting; USP8 abolished ENaC degradation in the endocytic pathway, but it had no effect on ENaC endocytosis. USP8 interacted with ENaC, as detected by co-immunoprecipitation, and it deubiquitinated ENaC. Consistent with a functional role for deubiquitination, mutation of the cytoplasmic lysines of ENaC reduced the effect of USP8 on ENaC cell surface abundance. In contrast to USP8, USP2-45 increased ENaC surface abundance by reducing endocytosis but not degradation. Thus, USP8 and USP2-45 selectively modulate ENaC trafficking at different steps in the endocytic pathway. Together with previous work, the data indicate that the ubiquitination state of ENaC is critical for the regulation of epithelial Na+ absorption.  相似文献   
85.
Neuropeptide Y (NPY) functions as a peptide neurotransmitter and as a neuroendocrine hormone. The active NPY peptide is generated in secretory vesicles by proteolytic processing of proNPY. Novel findings from this study show that cathepsin L participates as a key proteolytic enzyme for NPY production in secretory vesicles. Notably, NPY levels in cathepsin L knockout (KO) mice were substantially reduced in brain and adrenal medulla by 80% and 90%, respectively. Participation of cathepsin L in producing NPY predicts their colocalization in secretory vesicles, a primary site of NPY production. Indeed, cathepsin L was colocalized with NPY in brain cortical neurons and in chromaffin cells of adrenal medulla, demonstrated by immunofluorescence confocal microscopy. Immunoelectron microscopy confirmed the localization of cathepsin L with NPY in regulated secretory vesicles of chromaffin cells. Functional studies showed that coexpression of proNPY with cathepsin L in neuroendocrine PC12 cells resulted in increased production of NPY. Furthermore , in vitro processing indicated cathepsin L processing of proNPY at paired basic residues. These findings demonstrate a role for cathepsin L in the production of NPY from its proNPY precursor. These studies illustrate the novel biological role of cathepsin L in the production of NPY, a peptide neurotransmitter, and neuroendocrine hormone.  相似文献   
86.
Hook VY  Hwang SR 《Biological chemistry》2002,383(7-8):1067-1074
Secretory vesicles of neuroendocrine cells possess multiple proteases for proteolytic processing of proteins into biologically active peptide components, such as peptide hormones and neurotransmitters. The importance of proteases within secretory vesicles predicts the presence of endogenous protease inhibitors in this subcellular compartment. Notably, serpins represent a diverse class of endogenous protease inhibitors that possess selective target protease specificities, defined by the reactive site loop domains (RSL). In the search for endogenous serpins in model secretory vesicles of neuroendocrine chromaffin cells, the presence of serpins related to alpha1-antichymotrypsin (ACT) was detected by Western blots with anti-ACT. Molecular cloning revealed the primary structures of two unique serpins, endopin 1 and endopin 2, that possess homology to ACT. Of particular interest was the observation that distinct RSL domains of these new serpins predicted that endopin 1 would inhibit trypsin-like serine proteases cleaving at basic residues, and endopin 2 would inhibit both elastase and papain that represent serine and cysteine proteases, respectively. Endopin 1 showed selective inhibition of trypsin, but did not inhibit chymotrypsin, elastase, or subtilisin. Endopin 2 demonstrated cross-class inhibition of the cysteine protease papain and the serine protease elastase. Endopin 2 did not inhibit chymotrypsin, trypsin, plasmin, thrombin, furin, or cathepsin B. Endopin 1 and endopin 2 each formed SDS-stable complexes with target proteases, a characteristic property of serpins. In neuroendocrine chromaffin cells from adrenal medulla, endopin 1 and endopin 2 were both localized to secretory vesicles. Moreover, the inhibitory activity of endopin 2 was optimized under reducing conditions, which required reduced Cys-374; this property is consistent with the presence of endogenous reducing agents in secretory vesicles in vivo. These new findings demonstrate the presence of unique secretory vesicle serpins, endopin 1 and endopin 2, which possess distinct target protease selectivities. Endopin 1 inhibits trypsin-like proteases; endopin 2 possesses cross-class inhibition for inhibition of papain-like cysteine proteases and elastase-like serine proteases. It will be of interest in future studies to define the endogenous protease targets of these two novel secretory vesicle serpins.  相似文献   
87.
88.
Legionellaceae is a family of Gram-negative, mesophilic, and facultative intracellular parasitic bacteria that inhabits freshwater environments. In this article, the Legionella population of water samples from the North and South Lake, located close to the Brazilian Scientific Station on King George Island, Keller Peninsula, Antarctica has been characterized. Culture onto selective medium and a independent-culture method were applied to the samples. In our attempt to isolate Legionella species from Antarctic lakes, we were able to obtain one L. pneumophila colony by an amoebic coculture procedure followed by plate culture onto a selective medium. In addition, results obtained from phylogenetic inference showed the presence of noncharacterized specimens of Legionella spp. These findings indicated the presence of legionellae in Antarctica and suggest that these bacteria can adapt to extreme conditions and open new possibilities for understanding the survival strategies of mesophilic Legionellaceae living in Antarctic environments. Furthermore, the isolation of these symbiotic bacteria in Antarctic lakes will allow future studies on cold-resistant mechanisms of legionellae in polar environments.  相似文献   
89.
Metastatic uveal melanoma (UM) responds poorly to targeted therapies and immune checkpoint inhibitors. Loss of BRCA1-associated protein 1 (BAP1) via inactivating mutations in the BAP1 gene is associated with UM progression. Thus, molecular alterations caused by BAP1 dysfunction may be novel therapeutic targets for metastatic UM. Here, we found that phosphorylation of AMP-dependent kinase (AMPK) was elevated in BAP1-altered (or mutant) compared to BAP1-unaltered (or wild-type [WT]) UM tumors. As a readout of AMPK pathway activation, phosphorylation of an AMPK downstream effector, acetyl-CoA-carboxylase (ACC), was also elevated. BAP1 re-expression in BAP1-null UM cell lines decreased phospho-AMPK (pAMPK) and phospho-ACC (pACC) levels. AMPK phosphorylation is mediated by calcium/calmodulin dependent protein kinase kinase 2 (CaMKK2) and potentially liver kinase B1 (LKB1) in BAP1 mutant UM cells. Knockdown of AMPKα1/2 reduced the viability of BAP1 mutant UM cells, indicating a survival function of AMPK in BAP1 mutant UM. Our data suggest that the AMPK pathway is an important mechanism mediating the survival of BAP1 mutant UM. Targeting the AMPK pathway may be a novel therapeutic strategy for metastatic UM.  相似文献   
90.
Aggrecan, a major structural proteoglycan in cartilage, contains three globular domains, G1, G2, and G3, as well as sequences for glycosaminoglycan modification. A large number of proteases are implicated in aggrecan cleavage in normal metabolism, aging, and arthritis. These proteases are known to cleave at the IGD, KS, and CS domains. Here we report for the first time evidence of cleavage at a novel site, the carboxyl tail of aggrecan. Results from deletion mutants of the tail indicated that the likely cleavage sites were two consensus sequences, RRLXK and RSPR, present in the aggrecan analogs of many species. This was confirmed by site-directed mutagenesis. A construct containing two G3 domains (G3G3) was also found to cleave between the G3 duplicates. When G3 tail was linked to a glycosaminoglycan-modifying sequence, it was protected from cleavage. Furin inhibitor also reduced the levels of tail cleavage. The carboxyl tails of chicken and human versican were not cleaved, despite the presence of the consensus sequence. Our studies indicate that the basic amino acids present in the tail play an important role in cleavage, and this mechanism is specific to aggrecan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号