首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   3篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   5篇
  2016年   2篇
  2015年   8篇
  2014年   10篇
  2013年   13篇
  2012年   9篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2001年   3篇
  2000年   1篇
  1982年   1篇
  1968年   1篇
排序方式: 共有104条查询结果,搜索用时 93 毫秒
41.
42.
Flavonoids are a large class of phenylpropanoid-derived secondary metabolites, which are usually glycosylated by UDP-glycosyltransferases with one or more sugar groups. Here, we report the cloning and biochemical characterization of a flavonoid glycosyltransferase gene from Withania somnifera (WsGT), which is an important medicinal plant used in Ayurvedic formulations. Using PCR primers, designed for a highly conserved region of previously reported glycosyltransferases, we were able to isolate the corresponding fragment of the WsGT gene. Rapid amplification of cDNA ends (RACE) was then employed to isolate full-length cDNA, which had an open reading frame of 1,371 bp that encode for 456 amino acids. Phylogenetic analysis indicated that WsGT was similar to that of family 1 GT-B glycosyltransferase. Biochemical analysis revealed that WsGT interacts with UDP-glucose and was capable of regiospecifically glycosylating flavonoid-7-ols, such as apigenin, naringenin, luteolin, diadzein and genistein. Expression profiling studies showed that WsGT was highly expressed in young and mature leaves of W. somnifera. Furthermore, exposure to salicylic acid enhanced the expression of WsGT in the leaves and heat shock treatment resulted in decreased expression of WsGT after an initial increase. This may suggest the role of WsGT in response to abiotic/biotic stresses.  相似文献   
43.
Cinnamoyl CoA reductase (CCR) carries out the first committed step in monolignol biosynthesis and acts as a first regulatory point in lignin formation. CCR shows multiple substrate specificity towards various cinnamoyl CoA esters. Here, in Silico mutagenesis studies of active site residues of Ll-CCRH1 were carried out. Homology modeling based modeled 3D structure of Ll-CCRH1 was used as template for in Silico mutant preparations. Docking simulations of Ll-CCRH1 mutants with CoA esters by AutoDock Vina tools showed altered substrate specificity as compared to wild type. The study evidences that conformational changes, and change in geometry or architecture of active site pocket occurred following mutations. The altered substrate specificity for active site mutants suggests the possible physiological role of CCR either in lignin formation or in defense system in plants.

Abbreviations

Ll-CCRH1 - Leucaena leucocephala cinnamoyl CoA reductase 1, OPLS - Optimized Potentials for Liquid Simulations, RMSD - Root Mean Square Deviation.  相似文献   
44.
The diacylglycerol acyltransferase enzyme, DGAT1, presents itself as a potential target for obesity as this enzyme is dedicated to the final committed step in triglyceride biosynthesis. Biphenyl ureas, exemplified by compound 4, have been reported to be potent hDGAT1 inhibitors. We have synthesized and evaluated 2-pyridyl and 3-pyridyl containing biaryl ureas as hDGAT1 inhibitors. Our aim was to incorporate a heteroaryl scaffold within these molecules thereby improving the cLogP profile and making these compounds more drug-like. Compounds within this series exhibited potent hDGAT1 inhibition when evaluated using an in vitro enzymatic assay. Selected compounds were also subjected to an oral fat tolerance test in mice where the percent triglyceride reduction versus a vehicle control was evaluated. Of the studied heteroaryl analogs compound 44 exhibited an in vitro IC(50) of 17nM and a plasma triglyceride reduction of 79% along with a 12-fold improvement in solubility over the biphenyl urea compound 4.  相似文献   
45.
Glycosylphosphatidylinositols (GPIs) are the most abundant molecules present in the membranes of the parasitic protozoa Leishmania responsible for multiple forms of leishmaniasis. Among the prominent biological activities displayed by the major Leishmania GPIs [lipophosphoglycan (LPG) and glycoinositolphospholipids (GIPLs)] is the inhibition of macrophage functions such as the protein kinase C (PKC)-dependent signaling pathway. The bioactivity of Leishmania GPIs is in contrast to Trypanosoma brucei and Plasmodium falciparum GPIs, which activate the macrophage functions. To address the question as to which structural domain of Leishmania GPIs is responsible for dramatic down-regulation of PKC-dependent transient c-fos expression, the chemically synthesized defined alkylacylglycerolipids domain of corresponding GPIs, and LPG and GIPLs isolated from Leishmania donovani, were evaluated for inhibition of PKC and c-fos expression in macrophages. The results presented here demonstrate that the unusual lipid domain of Leishmania GPIs is primarily responsible for inhibition of PKC-dependent transient c-fos expression.  相似文献   
46.
Purpose

Hyperglycemia causes abnormal accumulation of methylglyoxal (MGO) and concomitant DNA, protein glycation. These pathophysiological changes further leads to diabetic complications. Yeast Saccharomyces cerevisiae is one of the best model to study MGO-induced glycation modifications. The aim of the present study was to investigate the effect of MGO on protein, DNA glycation, and oxidative stress markers using S. cerevisiae as a system.

Methods

Saccharomyces cerevisiae cells were incubated with 8 mM of MGO for 4 h and 24 h. After incubation, protein and DNA samples were isolated from the lysed cells. The samples were analyzed for various glycation (fructosamine, β-amyloid, free amino group, free thiol group, and hyperchromic shift analysis) and oxidative stress markers (total antioxidant potential, catalase, glutathione, and lipid peroxidation).

Results

MGO (8 mM) acted as a potent glycating agent, causing protein and DNA glycation in treated yeast cells. The glycation markers fructosamine and β-amyloid were significantly elevated when incubated for 4 h as compared to 24 h. Oxidative stress in the glycated yeast cells alleviated cellular antioxidant capacity and reduced the cell viability.

Conclusion

MGO caused significant glycation modifications of proteins and DNA in yeast cells. It also triggered increase in intracellular oxidative stress. MGO-induced protein, DNA glycation, and oxidative stress in S. cerevisiae indicate the suitability of the yeast model to study various biochemical pathways involved in diabetic complications and even conformational pathologies.

  相似文献   
47.
We examined a hypothesis that reactive oxygen species (ROS) generated by organophosphate compound dichlorvos modulates Hsp70 expression and anti-oxidant defense enzymes and acts as a signaling molecule for apoptosis in the exposed organism. Dichlorvos (0.015-15.0 ppb) without or with inhibitors of Hsp70, superoxide dismutase (SOD) and catalase (CAT) were fed to the third instar larvae of Drosophila melanogaster transgenic for hsp70 (hsp70-lacZ) Bg(9) to examine Hsp70 expression, oxidative stress and apoptotic markers. A concentration- and time-dependent significant increase in ROS generation accompanied by a significant upregulation of Hsp70 preceded changes in antioxidant defense enzyme activities and contents of glutathione, malondialdehyde and protein carbonyl in the treated organisms. An inhibitory effect on SOD and CAT activities significantly upregulated ROS generation and Hsp70 expression in the exposed organism while inhibition of Hsp70 significantly affected oxidative stress markers induced by the test chemical. A comparison made among ROS generation, Hsp70 expression and apoptotic markers showed that ROS generation is positively correlated with Hsp70 expression and apoptotic cell death end points indicating involvement of ROS in the overall adversity caused by the test chemical to the organism. The study suggests that (a) Hsp70 and anti-oxidant enzymes work together for cellular defense against xenobiotic hazard in D. melanogaster and (b) free radicals may modulate Hsp70 expression and apoptosis in the exposed organism.  相似文献   
48.
Glycyrrhizic acid (GA), a triterpenoid saponin glycoside from the roots and rhizomes of licorice is used in traditional and modern medicine for the treatment of numerous medical conditions including skin diseases and beauty care product. In the present study, we investigated the effect of GA against ultraviolet B (UVB) irradiation-induced photoaging in human dermal fibroblasts (HDFs) and its possible mechanism of action. HDFs were subjected to photoaging by sub-toxic dose of UVB (10 mj/cm(2)) irradiation. Cell viability, matrix metalloproteinase 1 (MMP1), pro-collagen 1, cellular and nuclear morphology, cell cycle, intracellular reactive oxygen species (ROS), caspase 3 and hyaluronidase inhibition assays were performed. Western blotting was used to evaluate the expression of NF-kappa B (NF-κB) and cytochrome-C proteins. GA treatment significantly inhibited photoaging. It achieved this by reducing ROS, NF-κB, cytochrome c, caspase 3 levels and inhibiting hyaluronidase enzyme. The main mechanism seems to be, most likely by blocking MMP1 activation by modulating NF-κB signaling. These findings may be useful for development of natural and safe photoprotective agents against UVB irradiation.  相似文献   
49.
A new series of aryl substituted ketene dithioacetals 6ah was synthesized and evaluated for their in vitro and in vivo antileishmanial activity against Leishmania donovani. Two compounds exhibited significant in vitro activity against intracellular amastigotes of L. donovani with IC50 values 3.56 and 5.12 μM and were found promising as compared with reference drug, miltefosine. On the basis of good Selectivity Indices (S.I.), they were further tested for their in vivo response against L. donovani/hamster model and showed significant inhibition of parasite multiplication 78% and 83%, respectively. These compounds were better than the existing antileishmanials in respect to IC50 and SI values, but were less active than miltefosine in vivo.  相似文献   
50.
Farnesyl pyrophosphate synthase (FPS; EC 2.5.1.10) is a key enzyme in isoprenoid biosynthetic pathway and provides precursors for the biosynthesis of various pharmaceutically important metabolites. It catalyzes head to tail condensation of two isopentenyl pyrophosphate molecules with dimethylallyl pyrophosphate to form C15 compound farnesyl pyrophosphate. Recent studies have confirmed FPS as a molecular target of bisphosphonates for drug development against bone diseases as well as pathogens. Although large numbers of FPSs from different sources are known, very few protein structures have been reported till date. In the present study, FPS gene from medicinal plant Bacopa monniera (BmFPS) was characterized by comparative modeling and docking. Multiple sequence alignment showed two highly conserved aspartate rich motifs FARM and SARM (DDXXD). The 3-D model of BmFPS was generated based on structurally resolved FPS crystal information of Gallus gallus. The generated models were validated by various bioinformatics tools and the final model contained only α-helices and coils. Further, docking studies of modeled BmFPS with substrates and inhibitors were performed to understand the protein ligand interactions. The two Asp residues from FARM (Asp100 and Asp104) as well as Asp171, Lys197 and Lys262 were found to be important for catalytic activity. Interaction of nitrogen containing bisphosphonates (risedronate, alendronate, zoledronate and pamidronate) with modeled BmFPS showed competitive inhibition; where, apart from Asp (100, 104 and 171), Thr175 played an important role. The results presented here could be useful for designing of mutants for isoprenoid biosynthetic pathway engineering well as more effective drugs against osteoporosis and human pathogens.

Abbreviations

IPP - Isopentenyl Pyrophosphate, DMAPP - Dimethylallyl Pyrophosphate, GPP - Geranyl Pyrophosphate, FPP - FPPFarnesyl Pyrophosphate, DOPE - Discrete Optimized Protein Energy, BmFPS - Bacopa monniera Farnesyl Pyrophosphate Synthase, RMSD - Root Mean square Deviation, OPLS-AA - Optimized Potentials for Liquid Simulations- All Atom, FARM - First Aspartate Rich Motif, SARM - Second Aspartate Rich Motif.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号