首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   3篇
  104篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   5篇
  2016年   2篇
  2015年   8篇
  2014年   10篇
  2013年   13篇
  2012年   9篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2001年   3篇
  2000年   1篇
  1982年   1篇
  1968年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
21.
22.
A series of novel 1,2,4-oxadiazole, phthalimide, amide and other derivatives of ISO-1 were synthesized and probed for inhibition of macrophage migration inhibitory factor (MIF) activity. Several compounds inhibited MIF enzymatic activity at levels better than ISO-1. Of note, compounds 7, 22, 23, 24, 25 and 27 inhibited the spontaneous secretion/release/recognition of MIF from freshly isolated human peripheral blood mononuclear cells and, more importantly, inhibited the MIF-induced production of interleukin-6 (IL-6) and/or interleukin-1β (IL-1β) significantly better than ISO-1.  相似文献   
23.
Laboratory experiments were conducted to study the population size, diversity and methane oxidation potential of methanotrophs in tropical rice agroecosystem under the influence of N-fertilizer. Results indicate that the diversity of methane oxidizing bacteria (MOB) is altered in fertilizer treated soils compared to untreated control. Nevertheless, Type I MOB still dominated in the fertilized soils whereas the diversity of Type II methanotrophs decreases. Control soils have higher MOB population and CH4 oxidation capacity than fertilized soils. Rhizospheric soil is more populated than non-rhizospheric soil in both unfertilized and fertilized conditions. Variation in Km and Vmax of methane oxidation in soils appears to be due to variation in methanotrophic community. Experimental results indicate that methanotrophic community differs both quantitatively and qualitatively in unfertilized and fertilized soils.  相似文献   
24.
GST (glutathione S-transferases) are a family of detoxification enzymes that catalyze the conjugation of reduced GSH (glutathione) to xenobiotic (endogenous electrophilic) compounds. GST from Wb (Wuchereria bancrofti) and Bm (Brugia malayi) are significantly different from human GST in sequence and structure. Thus, Wb-GST and Bm-GST are potential chemotherapeutic targets for anti-filarial treatment. Comparison of modeled Wb and Bm GST with human GST show structural difference between them. Analysis of the active site residues for the binding of electrophilic co-substrates provides insight towards the design of parasite specific GST inhibitors.  相似文献   
25.
26.
Live attenuated vaccines are of great value for preventing infectious diseases. They represent a delicate compromise between sufficient colonization-mediated adaptive immunity and minimizing the risk for infection by the vaccine strain itself. Immune defects can predispose to vaccine strain infections. It has remained unclear whether vaccine safety could be improved via mutations attenuating a vaccine in immune-deficient individuals without compromising the vaccine''s performance in the normal host. We have addressed this hypothesis using a mouse model for Salmonella diarrhea and a live attenuated Salmonella Typhimurium strain (ssaV). Vaccination with this strain elicited protective immunity in wild type mice, but a fatal systemic infection in immune-deficient cybb−/−nos2−/− animals lacking NADPH oxidase and inducible NO synthase. In cybb−/−nos2−/− mice, we analyzed the attenuation of 35 ssaV strains carrying one additional mutation each. One strain, Z234 (ssaV SL1344_3093), was >1000-fold attenuated in cybb−/−nos2−/− mice and ≈100 fold attenuated in tnfr1−/− animals. However, in wt mice, Z234 was as efficient as ssaV with respect to host colonization and the elicitation of a protective, O-antigen specific mucosal secretory IgA (sIgA) response. These data suggest that it is possible to engineer live attenuated vaccines which are specifically attenuated in immuno-compromised hosts. This might help to improve vaccine safety.  相似文献   
27.
Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.  相似文献   
28.
COVID-19 pandemic has caused severe disruption of global health and devastated the socio-economic conditions all over the world. The disease is caused by SARS-CoV-2 virus that belongs to the family of Coronaviruses which are known to cause a wide spectrum of diseases both in humans and animals. One of the characteristic features of the SARS-CoV-2 virus is the high reproductive rate (R0) that results in high transmissibility of the virus among humans. Vaccines are the best option to prevent and control this disease. Though, the traditional intramuscular (IM) route of vaccine administration is one of the effective methods for induction of antibody response, a needle-free self-administrative intradermal (ID) immunization will be easier for SARS-CoV-2 infection containment, as vaccine administration method will limit human contacts. Here, we have assessed the humoral and cellular responses of a RBD-based peptide immunogen when administered intradermally in BALB/c mice and side-by-side compared with the intramuscular immunization route. The results demonstrate that ID vaccination is well tolerated and triggered a significant magnitude of humoral antibody responses as similar to IM vaccination. Additionally, the ID immunization resulted in higher production of IFN-γ and IL-2 suggesting superior cellular response as compared to IM route. Overall, our data indicates immunization through ID route provides a promising alternative approach for the development of self-administrative SARS-CoV-2 vaccine candidates.  相似文献   
29.
The marine natural product fascaplysin (1) is a potent Cdk4 (cyclin-dependent kinase 4)-specific inhibitor, but is toxic to all cell types possibly because of its DNA-intercalating properties. Through the design and synthesis of numerous fascaplysin analogues, we intended to identify inhibitors of cancer cell growth with good therapeutic window with respect to normal cells. Among various non-planar tryptoline analogues prepared, N-(biphenyl-2-yl) tryptoline (BPT, 6) was identified as a potent inhibitor of cancer cell growth and free from DNA-binding properties owing to its non-planar structure. This compound was tested in over 60 protein kinase assays. It displayed inhibition of Cdk4-cyclin D1 enzyme in vitro far more potently than many other kinases including Cdk family members. Although it blocks growth of cancer cells deficient in the mitotic-spindle checkpoint at the G0/G1 phase of the cell cycle, the block occurs primarily at the G2/M phase. BPT inhibits tubulin polymerization in vitro and acts as an enhancer of tubulin depolymerization of paclitaxel-stabilized tubulin in live cells. Western blot analyses indicated that, in p53-positive cells, BPT upregulates the expression of p53, p21 and p27 proteins, whereas it downregulates the expression of cyclin B1 and Cdk1. BPT selectively kills SV40-transformed mouse embryonic hepatic cells and human fibroblasts rather than untransformed cells. BPT inhibited the growth of several human cancer cells with an IC50 <1 μM. The pharmacokinetic study in BALB/c mice indicated good plasma exposure after intravenous administration. It was found to be efficacious at 1/10th the maximum-tolerated dose (1000 mg/kg) against human tumours derived from HCT-116 (colon) and NCI-H460 (lung) cells in SCID (severe-combined immunodeficient) mice models. BPT is a relatively better anticancer agent than fascaplysin with an unusual ability to block two overlapping yet crucial phases of the cell cycle, mitosis and G0/G1. Its ability to effectively halt tumour growth in human tumour-bearing mice would suggest that BPT has the potential to be a candidate for further clinical development.A link between development of human cancers and cellular pathways where the retinoblastoma protein (pRb) has a major role is well established.1, 2 One of the frequent events associated with human tumour progression is abnormality in the pathway that links pRb, p16INK4A, cyclin D1 and Cdk4 (cyclin-dependent kinase 4).3 Cdk4 along with its activating cyclin partner D1 has a key role in cell cycle control.4, 5 The naturally occurring inhibitor of Cdk4-cyclin D1, p16INK4a (p16), is a tumour supressor protein. Deletion or inactivating mutations in the p16 gene are observed in many human cancers.6, 7 The catalytic activity of Cdk4 depends on its activation by the protein cyclin D1, which is expressed during the G0/G1 phase of the cell cycle. Many cancers are characterised by abnormal overproduction of cyclin D1.8, 9 As Cdk4 inhibitors target a pathway that links pRb, p16INK4A, cyclin D1 and Cdk4, it makes inhibition of Cdk4-cyclin D1 enzyme a crucially important target for cancer chemotherapy.10, 11, 12, 13 However, Rb mutations, consistent with loss of Rb function, have been identified in a wide spectrum of tumours including osteosarcomas, small-cell lung carcinomas, breast carcinomas and others, and the Cdk4 inhibitors cannot inhibit such pathway involving Rb-mutated tumours.A number of potential anticancer agents that selectively modulate the activity of Cdk4-cyclin D1 in vitro have been reported.14 These molecules also show the genotypic consequences of Cdk4 enzyme inhibition at the cellular level, that is, growth inhibition of cancer cells in vitro, arrest of asynchronous cells at G0/G1 and prevention of pRb phosphorylation at Cdk4-specific serine residues.15, 16, 17 Usually, competing with ATP molecules for binding at the protein kinase active site is the normal mechanism by which most small molecules inhibit kinase enzyme activity. Successful attempts to identify selective Cdk4 inhibitors using structure-based chemical design and molecular modelling have been reported.18, 19, 20 Furthermore, the success of Cdk4 inhibitors at clinical stages21, 22, 23, 24, 25 has indicated it as a promising therapeutic target for anticancer drug discovery.14Fascaplysin (1), a natural product originally isolated from a marine sponge, specifically inhibits the Cdk4 enzyme.26, 27 It inhibits Cdk4-cyclin D1 with an IC50 of ~0.35 μM and blocks growth of cancer cells at the G0/G1 phase of the cell cycle. Similar to cryptolepine and ellipticine,28 fascaplysin is also a planar structure and thus it intercalates double-stranded (d-s) DNA and shows unusual toxicity at the cellular level. It has been suggested that fascaplysin''s planar structure is the possible explanation for its ability to intercalate d-s DNA and also its unusual toxicity at the cellular level. To overcome this unusual toxicity, recently we reported CA224 (2), a non-planar analogue of fascaplysin exhibiting selective Cdk4 inhibition with no DNA-intercalating property.29 In continuation to these efforts, herein we report identification of tryptoline-based compounds CA198 (3), CA199 (4), CA211 (5) and N-(biphenyl-2-yl)-tryptoline (BPT, 6) as selective Cdk4 inhibitors with no DNA-intercalating property. Based on the molecular modelling design, a number of non-planar analogues of fascaplysin were synthesized. They show specificity towards Cdk4-cyclin D1 enzyme activity and blocks the growth of cancer cells at the G0/G1 phase. Although BPT was also designed using a homology model of Cdk4, based on the X-ray crystallographic structures of Cdk2, Cdk4 and Cdk6,30, 31, 32, 33 further investigations showed that BPT blocks growth of cells at the G2/M phase, in a Cdk-independent manner, through inhibition of tubulin polymerization. BPT shows potent cytotoxicity in a panel of cancer cells and is efficacious against human tumours derived from HCT-116 and NCI-H460 cells in SCID mice models. Here, we present the biological activity of BPT in detail. BPT (6) was synthesized using a one-step procedure by coupling tryptoline with biphenyl 2-carboxylic acid. The chemical synthesis of BPT and chemical structures of 1-6 are shown in Figure 1.Open in a separate windowFigure 1(a) Chemical structures of fascaplysin (1), CA224 (2) and its tryptoline analogues 3–6. (b) Synthetic scheme for BPT (6). (c) Molecular modelling studies to understand Cdk4 selectivity versus Cdk2: interactions of cis/trans conformations of BPT with Cdk2 and Cdk4, respectively (orange conformation is with Cdk2 and green with Cdk4)  相似文献   
30.
We herein report the design and synthesis of furoquinoline based novel molecules (16-36) and their in vitro multiple targeted inhibitory potency against PI3K/Akt phosphorylation and mTOR using cell based and cell-free kinase assay. In particular, compound 23 in addition to PI3K-mTOR inhibitory potency, it has shown potent inhibition of hypoxia-induced accumulation of HIF-1alpha protein in U251-HRE cell line. The inhibitory activities of compound 23 were confirmed by Western blot analysis, using human non-small cell lung carcinoma H-460 cell line and glioblastoma U251 cell lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号