首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   10篇
  350篇
  2024年   1篇
  2023年   2篇
  2022年   16篇
  2021年   22篇
  2020年   9篇
  2019年   14篇
  2018年   16篇
  2017年   8篇
  2016年   13篇
  2015年   16篇
  2014年   18篇
  2013年   34篇
  2012年   21篇
  2011年   26篇
  2010年   9篇
  2009年   7篇
  2008年   10篇
  2007年   13篇
  2006年   20篇
  2005年   19篇
  2004年   13篇
  2003年   5篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1984年   4篇
  1982年   2篇
  1978年   1篇
  1972年   2篇
  1960年   2篇
排序方式: 共有350条查询结果,搜索用时 15 毫秒
71.
Comparative lipid analysis demonstrated reduced amount of PG (50%) and lower ratio of MGDG/DGDG in iron-stressed Synechococcus sp. PCC 7942 cells compared to cells grown under iron sufficient conditions. In parallel, the monoenoic (C:1) fatty acids in MGDG, DGDG and PG increased from 46.8%, 43.7% and 45.6%, respectively in control cells to 51.6%, 48.8% and 48.7%, respectively in iron-stressed cells. This suggests increased membrane dynamics, which may facilitate the diffusion of PQ and keep the PQ pool in relatively more oxidized state in iron-stressed compared to control cells. This was confirmed by chlorophyll fluorescence and thermoluminescence measurements. Analysis of carotenoid composition demonstrated that the induction of isiA (CP43′) protein in response to iron stress is accompanied by significant increase of the relative abundance of all carotenoids. The quantity of carotenoids calculated on a Chl basis increased differentially with nostoxanthin, cryptoxanthin, zeaxanthin and β-carotene showing 2.6-, 3.1-, 1.9- and 1.9-fold increases, respectively, while the relative amount of caloxanthin was increased only by 30%. HPLC analyses of the pigment composition of Chl-protein complexes separated by non-denaturating SDS-PAGE demonstrated even higher relative carotenoids content, especially of cryptoxanthin, in trimer and monomer PSI Chl-protein complexes co-migrating with CP43′ from iron-stressed cells than in PSI complexes from control cells where CP43′ is not present. This implies a carotenoid-binding role for the CP43′ protein which supports our previous suggestion for effective energy quenching and photoprotective role of CP43′ protein in cyanobacteria under iron stress.  相似文献   
72.
The occurrence of Cassava tuber rot in regions of Kolli hills, Kollam, and Kottayam of South India, causes major economic loss up to 70% in Cassava production. The disease tuber is characterised by brown watery lesions with foul smell, making it unfit for further use. The sporangia of the pathogen were oval and ellipsoid with a short pedicle. Identification of the isolate from these regions was also confirmed by ribosomal internal transcribed spacer (ITS) of rDNA region. The pathogen was highly aggressive when pathogenicity was tested. Based on morphological, pathogenicity and ITS sequences, the pathogen was identified as Phytophthora palmivora. Development of integrated disease management practices is essential to combat the disease. This is the first report recording the spread of Cassava tuber rot disease in regions of Kolli hills of Tamil Nadu and Kollam and Kottayam, of Kerala.  相似文献   
73.
The application of enzymes as biocatalysts in industrial processes has great potential due to their outstanding stereo-, regio- and chemoselectivity. Using autodisplay, enzymes can be immobilized on the cell surface of Gram-negative bacteria such as Escherichia coli. In the present study, the surface display of an alcohol dehydrogenase (ADH) and a cyclohexanone monooxygenase (CHMO) on E. coli was investigated. Displaying these enzymes on the surface of E. coli resulted in whole-cell biocatalysts accessible for substrates without further purification. An apparent maximal reaction velocity VMAX(app) for the oxidation of cyclohexanol with the ADH whole-cell biocatalysts was determined as 59.9 mU ml−1. For the oxidation of cyclohexanone with the CHMO whole-cell biocatalysts a VMAX(app) of 491 mU ml−1 was obtained. A direct conversion of cyclohexanol to ε-caprolactone, which is a known building block for the valuable biodegradable polymer polycaprolactone, was possible by combining the two whole-cell biocatalysts. Gas chromatography was applied to quantify the yield of ε-caprolactone. 1.12 mM ε-caprolactone was produced using ADH and CHMO displaying whole-cell biocatalysts in a ratio of 1:5 after 4 h in a cell suspension of OD578nm 10. Furthermore, the reaction cascade as applied provided a self-sufficient regeneration of NADPH for CHMO by the ADH whole-cell biocatalyst.  相似文献   
74.
Designed and synthesized novel homopiperazine linked imidazo[1,2-a]pyrimidine derivatives (10a–i, 11a–g, 12), and evaluated them for their in vitro cytotoxicity against HeLa cells (cervical cancer), A549 cells (lung cancer) cells, by MTT assay. Compound 12 (IC50 = 4.14 µM) and compound 10c (IC50 = 5.98 µM) were found to be 2.5 fold, and 1.74 fold more potent when compared with standard Etoposide (IC50 = 10.44 µM), against A549 (lung cancer cells). Compound 12 also found to be 1.57 and 1.13 fold potent against DU145 (IC50 = 6.24 µM) and HeLa (IC50 = 6.54 µM), respectively when compared with Etoposide (DU145, IC50 = 9.8 µM; HeLa, IC50 = 7.43 µM). Compound 10f (IC50 = 6.12 µM) was found to be 1.31 fold more potent than Etoposide (IC50 = 7.43 µM) against HeLa cell lines.Moreover compounds 10a and 11a showed cytotoxicity at low micro-molar concentrations against A549 cells. Synthesized compounds were also evaluated for their antimicrobial activity by Cup plate diffusion method. Compounds 10c, 11b, 11d and 11f displayed remarkable antimicrobial activity relating to their standard drugs Gentamycin, Amphotericin B and Ampicillin. Significantly, compound 10c showed broad spectrum activity against tested microbial strains. All the designed compounds were well occupied the binding site of the colchicine and interacted with both α- and β-tubuline interface (PDB ID: 3E22), which demonstrates that synthesized compounds are promising tubulin inhibitors. Also, the synthesized compounds occupied the catalytic triad and adenine-binding site, in the active site of β-ketoacyl-acyl carrier protein synthase III enzyme (PDB ID: 1MZS). The molecular docking results provided the useful information for the future design of more potent inhibitors. These preliminary results convinced further investigation and modifications on synthesized compounds aiming towards the development of potential cytotoxic as well as antimicrobial agents.  相似文献   
75.
Contaminated land is increasingly becoming an important issue worldwide. Many contaminants are persistent in soil for a large number of years. With the increase in public awareness regarding the consequences of contaminated soil, many researchers are concentrating on developing cost-effective and socially acceptable soil remediation technologies. Soils of many sites, which have been left derelict after industrial decline, harbor a broad suite of metal and organic contaminants. Land where such contaminants are deemed to pose a significant risk to receptors is considered contaminated under modern guidance. Remediation to break identified pollutant linkages would precede reclamation and plant establishment. One approach to break the pollutant receptor linkage is to utilize materials that effectively create soil conditions that immobilize contaminants whilst providing essential plant growth properties in terms of nutrition and water holding capacity. Materials that may achieve this include: 1) composts derived from materials such as sewage sludges and other municipal sources; 2) natural or synthetic zeolites; or 3) industrial by-products such as red-mud or other iron-rich materials such as iron grit or iron oxyhydroxides. Remediation techniques that utilize such materials may be cost-effective compared to more traditional methods and may effectively divert materials from the waste stream and could thereby make a dual contribution to sustainable development.  相似文献   
76.
The purpose of this research work was to establish mucoadhesive buccal devices of propranolol hydrochloride (PRH) in the forms of bilayered and multilayered tablets. The tablets were prepared using sodium carboxymethylcellulose (SCMC) and Carbopol-934 (CP) as bioadhesive polymers to impart mucoadhesion and ethyl cellulose (EC) to act as an impermeable backing layer. Buccal devices were evaluated by different parameters such as weight uniformity, content uniformity, thickness, hardness, surface pH, swelling index, ex vivo mucoadhesive strength, ex vivo mucoadhesion time, in vitro drug release, and in vitro drug permeation. As compared with bilayered tablets, multilayered tablets showed slow release rate of drug with improved ex vivo bioadhesive strength and enhanced ex vivo mucoadhesion time. The mechanism of drug release was found to be non-Fickian diffusion (value of n between 0.5 and 1.0) for both the buccal devices. The stability of drug in both the optimized buccal devices was tested for 6 hours in natural human saliva; both the buccal devices were found to be stable in natural human saliva. The present study concludes that mucoadhesive buccal devices of PRH can be a good way to bypass the extensive hepatic first-pass metabolism and to improve the bioavailability of PRH. Published: March 16, 2007  相似文献   
77.
78.
79.
The neural cell adhesion molecule (NCAM) and its associated glycan polysialic acid play important roles in the development of the nervous system and N-methyl-D-aspartate(NMDA)receptor-dependent synaptic plasticity in the adult. Here, we investigated the influence of polysialic acid on NMDA receptor activity. We found that glutamate-elicited NMDA receptor currents in cultured hippocampal neurons were reduced by approximately 30% with the application of polysialic acid or polysialylated NCAM but not by the sialic acid monomer, chondroitin sulfate, or non-polysialylated NCAM. Polysialic acid inhibited NMDA receptor currents elicited by 3 microm glutamate but not by 30 microm glutamate, suggesting that polysialic acid acts as a competitive antagonist, possibly at the glutamate binding site. The polysialic acid induced effects were mimicked and fully occluded by the NR2B subunit specific antagonist, ifenprodil. Recordings from single synaptosomal NMDA receptors reconstituted in lipid bilayers revealed that polysialic acid reduced open probability but not the conductance of NR2B-containing NMDA receptors in a polysialic acid and glutamate concentration-dependent manner. The activity of single NR2B-lacking synaptosomal NMDA receptors was not affected by polysialic acid. Application of polysialic acid to hippocampal cultures reduced excitotoxic cell death induced by low micromolar concentration of glutamate via activation of NR2B-containing NMDA receptors, whereas enzymatic removal of polysialic acid resulted in increased cell death that occluded glutamate-induced excitotoxicity. These observations indicate that the cell adhesion molecule-associated glycan polysialic acid is able to prevent excitotoxicity via inhibition of NR2B subunit-containing NMDA receptors.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号