首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1596篇
  免费   68篇
  国内免费   2篇
  1666篇
  2024年   3篇
  2023年   11篇
  2022年   38篇
  2021年   46篇
  2020年   29篇
  2019年   38篇
  2018年   51篇
  2017年   44篇
  2016年   71篇
  2015年   76篇
  2014年   105篇
  2013年   134篇
  2012年   140篇
  2011年   122篇
  2010年   88篇
  2009年   78篇
  2008年   84篇
  2007年   72篇
  2006年   60篇
  2005年   53篇
  2004年   52篇
  2003年   32篇
  2002年   23篇
  2001年   20篇
  2000年   15篇
  1999年   18篇
  1998年   11篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1993年   3篇
  1992年   6篇
  1991年   21篇
  1990年   6篇
  1989年   13篇
  1988年   9篇
  1987年   6篇
  1986年   9篇
  1985年   8篇
  1984年   13篇
  1983年   8篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1972年   4篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
排序方式: 共有1666条查询结果,搜索用时 0 毫秒
91.
Metalloids represent a wide range of elements with intermediate physiochemical properties between metals and non-metals. Many of the metalloids, like boron, selenium, and silicon are known to be essential or quasi-essential for plant growth. In contrast, metalloids viz. arsenic and germanium are toxic to plant growth. The toxicity of metalloids largely depends on their concentration within the living cells. Some elements, at low concentration, may be beneficial for plant growth and development; however, when present at high concentration, they often exert negative effects. In this regard, understanding the molecular mechanisms involved in the uptake of metalloids by roots, their subsequent transport to different tissues and inter/intra-cellular redistribution has great importance. The mechanisms of metalloids' uptake have been well studied in plants. Also, various transporters, as well as membrane channels involved in these processes, have been identified. In this review, we have discussed in detail the aspects concerning the positive/negative effects of different metalloids on plants. We have also provided a thorough account of the uptake, transport, and accumulation, along with the molecular mechanisms underlying the response of plants to these metalloids. Additionally, we have brought up the previous theories and debates about the role and effects of metalloids in plants with insightful discussions based on the current knowledge.  相似文献   
92.
93.
The glyoxalase system constitutes the major pathway for the detoxification of metabolically produced cytotoxin methylglyoxal (MG) into a non‐toxic metabolite d ‐lactate. Glyoxalase I (GLY I) is an evolutionarily conserved metalloenzyme requiring divalent metal ions for its activity: Zn2+ in the case of eukaryotes or Ni2+ for enzymes of prokaryotic origin. Plant GLY I proteins are part of a multimember family; however, not much is known about their physiological function, structure and metal dependency. In this study, we report a unique GLY I (OsGLYI‐11.2) from Oryza sativa (rice) that requires Ni2+ for its activity. Its biochemical, structural and functional characterization revealed it to be a monomeric enzyme, possessing a single Ni2+ coordination site despite containing two GLY I domains. The requirement of Ni2+ as a cofactor by an enzyme involved in cellular detoxification suggests an essential role for this otherwise toxic heavy metal in the stress response. Intriguingly, the expression of OsGLYI‐11.2 was found to be highly substrate inducible, suggesting an important mode of regulation for its cellular levels. Heterologous expression of OsGLYI‐11.2 in Escherichia coli and model plant Nicotiana tabacum (tobacco) resulted in improved adaptation to various abiotic stresses caused by increased scavenging of MG, lower Na+/K+ ratio and maintenance of reduced glutathione levels. Together, our results suggest interesting links between MG cellular levels, its detoxification by GLY I, and Ni2+ – the heavy metal cofactor of OsGLYI‐11.2, in relation to stress response and adaptation in plants.  相似文献   
94.
The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell''s compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.  相似文献   
95.
96.
The proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) multi-gene families code for approximately 10 % of the Mycobacterium tuberculosis (Mtb) genome. These proteins are thought to be virulence factors that participate in impounding the host immune responses. While some members have been studied, the functions of most PE/PPE proteins are yet to be explored. The studies presented here have specifically characterized the roles of one of the PE proteins of Mtb, Rv0160c (PE4), in mycobacterial persistence and in prophylactic efficacy. We have expressed Rv0160c in a non-pathogenic fast-growing Mycobacterium smegmatis strain and demonstrated that the protein improves the survival of mycobacteria in macrophages and in mice. The protein has also shown its effect under physiological stress of bacteria, as evidenced by elevated expression in acidic and in hypoxic conditions. In mice, the level of Rv0160c was noticeably high during the chronic stage of tuberculosis. The seroreactivity of the protein against different categories of tuberculosis patients revealed a strong B-cell humoral response in freshly infected pulmonary tuberculosis patients. In mice, it exhibited increased IL-2, TNF, and IL-6 production. The antigenic properties of the protein directed towards the protective efficacy against the Mtb challenge. All together, our findings have identified Rv0160c as an in vivo expressed immunodominant antigen which plays a crucial role in the pathogenesis of mycobacterial disease and could prove to be a good preventive antigen for tuberculosis.  相似文献   
97.
Dilution of protein–surfactant complexes is an integrated step in microfluidic protein sizing, where the contribution of free micelles to the overall fluorescence is reduced by dilution. This process can be further improved by establishing an optimum surfactant concentration and quantifying the amount of protein based on the fluorescence intensity. To this end, we study the interaction of proteins with anionic sodium dodecyl sulfate (SDS) and cationic hexadecyl trimethyl ammonium bromide (CTAB) using a hydrophobic fluorescent dye (sypro orange). We analyze these interactions fluourometrically with bovine serum albumin, carbonic anhydrase, and beta‐galactosidase as model proteins. The fluorescent signature of protein–surfactant complexes at various dilution points shows three distinct regions, surfactant dominant, breakdown, and protein dominant region. Based on the dilution behavior of protein–surfactant complexes, we propose a fluorescence model to explain the contribution of free and bound micelles to the overall fluorescence. Our results show that protein peak is observed at 3 mM SDS as the optimum dilution concentration. Furthermore, we study the effect of protein concentration on fluorescence intensity. In a single protein model with a constant dye quantum yield, the peak height increases with protein concentration. Finally, addition of CTAB to the protein–SDS complex at mole fractions above 0.1 shifts the protein peak from 3 mM to 4 mM SDS. The knowledge of protein–surfactant interactions obtained from these studies provides significant insights for novel detection and quantification techniques in microfluidics.  相似文献   
98.
A series of 9-substituted tetrahydroacridines were synthesized by nucleophilic substitution of chloro group with different nucleophiles in 9-chlorotetrahydroacridine (2). The latter could be obtained by POCl(3) mediated cyclization of the intermediate enamine, which in turn, was prepared by acid catalyzed condensation of anthranilic acid and cyclohexanone. Most of the compounds on antitubercular evaluation against M. tuberculosis H37 Rv and H37 Ra strains exhibited potent activities with MIC 6.125-0.78 microg/mL comparable to the standard drugs.  相似文献   
99.
Percutaneous implants are a family of devices that penetrate the skin and all suffer from the same problems of infection because the skin seal around the device is not optimal. Contributing to this problem is the mechanical discontinuity of the skin/device interface leading to stress concentrations and micro-trauma that chronically breaks any seal that forms. In this paper, we have quantified the mechanical behavior of human skin under low-magnitude shear loads over physiological relevant frequencies. Using a stress-controlled rheometer, we have performed isothermal (37 degrees C) frequency response experiments between 0.628 and 75.39rad/s at 0.5% and 0.04% strain on whole skin and dermis-only, respectively. Step-stress experiments of 5 and 10Pa shear loads were also conducted as were strain sweep tests (6.28rad/s). Measurements were made of whole human skin and skin from which the epidermis was removed (dermis-only). At low frequencies (0.628-10rad/s), the moduli are only slightly frequency dependent, with approximate power-law scaling of the moduli, G' approximately G' approximately omega(beta), yielding beta=0.05 for whole skin and beta=0.16 for dermis-only samples. Step-stress experiments revealed three distinct phases. The intermediate phase included elastic "ringing" (damped oscillation) which provided new insights and could be fit to a mathematical model. Both the frequency and step-stress response data suggest that the epidermis provides an elastic rigidity and dermis provides viscoelasticity to the whole skin samples. Hence, whole skin exhibited strain hardening while the dermis-only demonstrated stress softening under step-stress conditions. The data obtained from the low-magnitude shear loads and frequencies that approximate the chronic mechanical environment of a percutaneous implant should aid in the design of a device with an improved skin seal.  相似文献   
100.
Methotrexate (MTX) is an anti-metabolite drug widely used in the treatment of neoplastic disorders, rheumatoid arthritis and psoriasis. Developed as an analogue of folic acid, it inhibits purine and pyrimidine synthesis that accounts for its therapeutic efficacy as well as for its toxicities. MTX has narrow therapeutic index and its toxicity has been reported in various organ systems including gastrointestinal, haematologic and central nervous system. The objective of the present study is to investigate the germ cell toxicity induced by MTX in male Swiss mice. MTX was administered intraperitoneally (ip) at the doses of 5, 10, 20 and 40mg/kg to mice (20-25g) weekly once (wk) for 5 and 10 weeks. The animals were sacrificed 1 week after receiving the last treatment of MTX. The germ cell toxicity was evaluated using testes weight (wt), sperm count, sperm head morphology, sperm comet assay, histology, TUNEL and halo assay in testis. MTX treatment significantly reduced the sperm count and increased the occurrence of sperm head abnormalities in a dose dependent manner. It induced the testicular toxicity as evident from the histology of testis. Sperm comet, TUNEL and halo assay in testis also revealed significant DNA damage after MTX treatment. On the basis of the present study, it can be concluded that MTX induced germ cell toxicity in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号