首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2013篇
  免费   172篇
  2185篇
  2022年   19篇
  2021年   39篇
  2020年   20篇
  2019年   22篇
  2018年   22篇
  2017年   24篇
  2016年   35篇
  2015年   73篇
  2014年   102篇
  2013年   135篇
  2012年   155篇
  2011年   126篇
  2010年   113篇
  2009年   90篇
  2008年   121篇
  2007年   147篇
  2006年   114篇
  2005年   79篇
  2004年   89篇
  2003年   68篇
  2002年   77篇
  2001年   23篇
  2000年   18篇
  1999年   24篇
  1998年   15篇
  1997年   10篇
  1995年   11篇
  1993年   9篇
  1992年   20篇
  1991年   17篇
  1990年   10篇
  1989年   14篇
  1988年   15篇
  1987年   19篇
  1986年   10篇
  1985年   8篇
  1984年   9篇
  1983年   10篇
  1982年   8篇
  1981年   11篇
  1979年   15篇
  1976年   10篇
  1974年   11篇
  1973年   14篇
  1971年   9篇
  1923年   11篇
  1922年   14篇
  1921年   12篇
  1920年   14篇
  1919年   8篇
排序方式: 共有2185条查询结果,搜索用时 15 毫秒
101.
102.
Many neurodegenerative disorders are characterized by two pathological hallmarks: progressive loss of neurons and occurrence of inclusion bodies containing ubiquitinated proteins. Inflammation may be critical to neurodegeneration associated with ubiquitin-protein aggregates. We previously showed that prostaglandin J2 (PGJ2), one of the endogenous products of inflammation, induces neuronal death and the accumulation of ubiquitinated proteins into distinct aggregates. We now report that temporal microarray analysis of human neuroblastoma SK-N-SH revealed that PGJ2 triggered a "repair" response including increased expression of heat shock, protein folding, stress response, detoxification and cysteine metabolism genes. PGJ2 also decreased expression of cell growth/maintenance genes and increased expression of apoptotic genes. Over time pro-death responses prevailed over pro-survival responses, leading to cellular demise. Furthermore, PGJ2 increased the expression of proteasome and other ubiquitin-proteasome pathway genes. This increase failed to overcome PGJ2 inhibition of 26 S proteasome activity. Ubiquitinated proteins are degraded by the 26 S proteasome, shown here to be the most active proteasomal form in SK-N-SH cells. We demonstrate that PGJ2 impairs 26 S proteasome assembly, which is an ATP-dependent process. PGJ2 perturbs mitochondrial function, which could be critical to the observed 26 S proteasome disassembly, suggesting a cross-talk between mitochondrial and proteasomal impairment. In conclusion neurotoxic products of inflammation, such as PGJ2, may play a role in neurodegenerative disorders associated with the aggregation of ubiquitinated proteins by impairing 26 S proteasome activity and inducing a chain of events that culminates in neuronal cell death. Temporal characterization of these events is relevant to understanding the underlying mechanisms and to identifying potential early biomarkers.  相似文献   
103.
104.
Regulation of ecdysteroid production in lepidopteran prepupae was studied using a parasitic wasp (C. near curvimaculatus) which specifically suppresses host prepupal ecdysteroid production after the induction of precocious host metamorphosis. At the developmental stage at which the hemolymph of the unparasitized metamorphosing host has its maximum titer of prepupal ecdysteroids, the hemolymph of 4th instar "truly parasitized" hosts (hosts with a surviving endoparasite) had a strongly reduced ecdysteroid titer. However, during the photophase about 12 h later, just prior to emergence of the parasite larva, an ecdysteroid peak was observed in the host hemolymph. Fourth instar pseudoparasitized prepupal hosts (in which the endoparasite was not present or died early in development) exhibited a sustained suppression in the hemolymph ecdysteroid titer. Small 5th instar pseudoparasitized hosts, which normally would molt to a 6th instar prior to metamorphosis, but which precociously attained the prepupal stage, also had a strongly reduced ecdysteroid titer. The late increase observed in truly parasitized hosts could be completely prevented by surgical removal of the parasite 24 h earlier, resulting in a titer similar to that in pseudoparasitized hosts. HPLC analysis of ecdysteroids in normal, truly parasitized, and 4th or 5th instar pseudoparasitized prepupae showed that both ecdysone and 20-OH ecdysone* were suppressed in truly and pseudoparasitized prepupae, with ecdysteroid levels being lowest in pseudoparasitized hosts. These data, and those of Brown and Reed-Larsen (Biol Contr 1, 136 [1992]), showing endoparasite secretion of ecdysteroids just prior to its emergence from the host, strongly indicate that: (1) the prepupal peak in truly parasitized hosts originates from the endoparasite, and (2) the low level of ecdysteroids in pseudoparasitized hosts results from the host's intrinsic inability to express a normal level of prepupal ecdysteroid titer. While precocious 4th or 5th instar prepupae of similar size had similarly suppressed ecdysteroid titers, smaller 4th instar prepupae had a lower ecdysteroid titer than larger, precocious 5th instar prepupae. Rare 5th instar pseudoparasitized prepupae that were of nearly normal size showed a prepupal ecdysteroid titer distinctly greater than those of the usual smaller, precocious 5th instar prepupae. The data suggest that the competence of the host to express a normal hemolymph titer of prepupal ecdysteroids is more closely correlated with the size of the prepupae than with the instar attained.  相似文献   
105.
The diversity of clinical (n = 92) and oral and digestive commensal (n = 120) isolates of Streptococcus salivarius was analyzed by multilocus sequence typing (MLST). No clustering of clinical or commensal strains can be observed in the phylogenetic tree. Selected strains (92 clinical and 46 commensal strains) were then examined for their susceptibilities to tetracyclines, macrolides, lincosamides, aminoglycosides, and phenicol antibiotics. The presence of resistance genes tet(M), tet(O), erm(A), erm(B), mef(A/E), and catQ and associated genetic elements was investigated by PCR, as was the genetic linkage of resistance genes. High rates of erythromycin and tetracycline resistance were observed among the strains. Clinical strains displayed either the erm(B) (macrolide-lincosamide-streptogramin B [MLSB] phenotype) or mef(A/E) (M phenotype) resistance determinant, whereas almost all the commensal strains harbored the mef(A/E) resistance gene, carried by a macrolide efflux genetic assembly (MEGA) element. A genetic linkage between a macrolide resistance gene and genes of Tn916 was detected in 23 clinical strains and 5 commensal strains, with a predominance of Tn3872 elements (n = 13), followed by Tn6002 (n = 11) and Tn2009 (n = 4) elements. Four strains harboring a mef(A/E) gene were also resistant to chloramphenicol and carried a catQ gene. Sequencing of the genome of one of these strains revealed that these genes colocalized on an IQ-like element, as already described for other viridans group streptococci. ICESt3-related elements were also detected in half of the isolates. This work highlights the potential role of S. salivarius in the spread of antibiotic resistance genes both in the oral sphere and in the gut.  相似文献   
106.
This paper describes the discovery of non-peptidic, potent, and selective hydroxy ethylamine (HEA) inhibitors of BACE-1 by replacement of the prime side of a lead di-amide 2. Inhibitors with nanosmolar potency and high selectivity were identified. Depending on the nature of the P(1)(') and P(2)(') substituents, two different binding modes were observed in X-ray co-crystal structures.  相似文献   
107.
None of the already described CK2 inhibitors did fulfill the requirements for successful clinical settings. In order to find innovative CK2 inhibitors based on new scaffolds, we have performed a high-throughput screening of diverse chemical libraries. We report here the identification and characterization of several classes of new inhibitors. Whereas some share characteristics of previously known CK2 inhibitors, others are chemically unrelated and may represent new opportunities for the development of better CK2 inhibitors. By combining structure-activity relationships with a docking procedure, we were able to determine the binding mode of these inhibitors. Interestingly, beside the identification of several nanomolar ATP-competitive inhibitors, one class of chemical inhibitors displays a non-ATP competitive mode of inhibition, a feature that suggests that CK2 possess distinct druggable binding sites. For the most promising inhibitors, selectivity profiling was performed. We also provide evidence that some chemical compounds are inhibiting CK2 in living cells. Finally, the collected data allowed us to draw the rules about the chemical requirements for CK2 inhibition both in vitro and in a cellular context.  相似文献   
108.
109.
The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD) at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks) to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (P<0.0001), this being compensated by an increase in abundance of propionate/acetate producing species. To further understand the influence of these species on the development of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD.  相似文献   
110.
Werner syndrome (WS) is an autosomal recessive genetic disorder that is manifested by genetic instability and premature onset of age-related diseases, including atherosclerosis and cancer. The gene that is mutated in WS cells (WRN) has been identified recently. Characterizations of the WRN gene product indicate that WRN encodes both a 3'-->5' DNA helicase, belonging to the Escherichiacoli RecQ helicase family, and a 3'-->5' DNA exonuclease. Studies to define the molecular mechanism of WRN-DNA transactions are currently underway in many laboratories. Preliminary results indicate that WRN functions as a key factor in resolving aberrant DNA structures that arise from DNA metabolic processes such as replication, recombination and/or repair, to preserve the genetic integrity in cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号