首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2736篇
  免费   263篇
  国内免费   1篇
  2023年   14篇
  2022年   31篇
  2021年   50篇
  2020年   24篇
  2019年   44篇
  2018年   54篇
  2017年   49篇
  2016年   77篇
  2015年   127篇
  2014年   142篇
  2013年   173篇
  2012年   199篇
  2011年   158篇
  2010年   130篇
  2009年   105篇
  2008年   148篇
  2007年   160篇
  2006年   134篇
  2005年   156篇
  2004年   136篇
  2003年   133篇
  2002年   118篇
  2001年   27篇
  2000年   16篇
  1999年   26篇
  1998年   41篇
  1997年   34篇
  1996年   26篇
  1995年   35篇
  1994年   25篇
  1993年   27篇
  1992年   22篇
  1991年   18篇
  1990年   16篇
  1989年   13篇
  1988年   23篇
  1987年   10篇
  1986年   18篇
  1985年   14篇
  1984年   16篇
  1983年   17篇
  1982年   21篇
  1981年   10篇
  1980年   15篇
  1978年   16篇
  1976年   17篇
  1975年   9篇
  1974年   9篇
  1973年   14篇
  1967年   8篇
排序方式: 共有3000条查询结果,搜索用时 31 毫秒
121.
Li  Zhi-Hao  Zhong  Wen-Fang  Lv  Yue-Bin  Kraus  Virginia Byers  Gao  Xiang  Chen  Pei-Liang  Huang  Qing-Mei  Ni  Jin-Dong  Shi  Xiao-Ming  Mao  Chen  Wu  Xian-Bo 《Immunity & ageing : I & A》2019,16(1):1-12
Background

The plasma level of the inflammatory biomarker soluble urokinase plasminogen activator receptor (suPAR) is a strong predictor of disease development and premature mortality in the general population. Unhealthy lifestyle habits such as smoking or unhealthy eating is known to elevate the suPAR level. We aimed to investigate whether change in lifestyle habits impact on the suPAR level, and whether the resultant levels are associated with mortality.

Results

Paired suPAR measurements from baseline- and the 5-year visit of the population-based Inter99 study were compared with the habits of diet, smoking, alcohol consumption, and physical activity. Paired suPAR measurements for 3225 individuals were analyzed by linear regression, adjusted for demographics and lifestyle habits. Compared to individuals with a healthy lifestyle, an unhealthy diet, low physical activity, and daily smoking were associated with a 5.9, 12.8, and 17.6% higher 5-year suPAR, respectively. During 6.1 years of follow-up after the 5-year visit, 1.6% of those with a low suPAR (mean 2.93 ng/ml) died compared with 3.8% of individuals with a high suPAR (mean 4.73 ng/ml), P <  0.001. In Cox regression analysis, adjusted for demographics and lifestyle, the hazard ratio for mortality per 5-year suPAR doubling was 2.03 (95% CI: 1.22–3.37).

Conclusion

Lifestyle has a considerable impact on suPAR levels; the combination of unhealthy habits was associated with 44% higher 5-year suPAR values and the 5-year suPAR was a strong predictor of mortality. We propose suPAR as a candidate biomarker for lifestyle changes as well as the subsequent risk of mortality.

  相似文献   
122.
BackgroundCandida albicans is a microorganism frequently involved in several infections; the patient's oral cavity, caries niches or periodontal disease can sometimes be the reservoir.. The fungal resistance to the available treatments, among other reasons, has led to the search for new antifungal alternatives.AimsTo carry out a comparative study of the in vitro effects of diethylstilboestrol (DES) and fluconazole (FLZ) on the growth of clinical strains of C. albicans.MethodsSeven strains of C. albicans were used: a) one FLZ-sensitive culture collection strain, ATCC 90028 (ATCC); b) four oral isolates from four oncological patients with periodontal disease (period 8, 9, 10, and 11); and c) two oral isolates from an AIDS patient with oropharyngeal candidiasis: one FLZ- sensitive (2-76), and another FLZ- resistant (12-99). The MIC was evaluated by standard spectrophotometric techniques using the CLSI (M27-A3) guidelines. The inhibitory concentration 50% (IC50) was calculated using functional analysis with the Graph Pad software.ResultsDES inhibited the growth of all C. albicans strains, whether sensitive or resistant to FLZ. Experimental data fitted non-linear functions of inhibitor concentration versus response. Minimum inhibitory concentrations (MIC) for DES and FLZ were as follows: 28.18 µg/ml and 4.90 µg/ml (ATCC); 17.16 µg/ml and 3.14 µg/ml (period); 27.64 µg/ml and 4.22 µg/ml (2-76); 6.16 µg/ml and 438.19 µg/ml (12-99), respectively.ConclusionsDES showed antifungal activity on all clinical C. albicans strains isolated from patients with dental and medical diseases. It showed the highest potency on the FLZ-resistant isolate.  相似文献   
123.
124.

Thymus sibthorpii Benth. (Lamiaceae), with accession number 01,1796-22, is a biotype of native Greek thyme with ascending stems and potential use as a new medicinal-aromatic crop and ornamental plant. An efficient and reliable protocol for in vitro clonal propagation of T. sibthorpii from nodes and meristem tip explants was developed. Shoot proliferation succeeded on a new basal medium (BB) without plant growth regulators, as prior experiments with 6-benzyladenine generated hyperhydricity. Eight different basal media were compared; on two formulations using the new BB 5.9 and 5.6 shoots per explant were produced. Regenerated single shoots were rooted in the BB medium, supplemented with 5 μM of indole-3-butyric acid, and produced 3.1 roots along with 2.5 adventitious shoots. Three types of acclimatization were assessed: in vitro, using two different systems (no significant differences); ex vitro, using eight soil substrates under greenhouse and outdoor nursery conditions (in two of them, 100% of plantlets survived); and in field cultivations, established at eight geographically distant areas of Greece (100% survival rate at all locations). Molecular characterization of T. sibthorpii was evaluated with one nuclear ribosomal DNA and seven chloroplast DNA markers, followed by DNA sequence comparisons with a total of 30 different Thymus species, subspecies, and varieties. The trnH/psbA, trnL/trnF, and matK genes were the most efficient markers for molecular characterization of T. sibthorpii. The molecular markers rpoC1 and petB/petD did not match to any Thymus species and therefore, these DNA sequences provide new sequence information for entire Thymus taxa.

  相似文献   
125.

We established a protocol for the in vitro propagation of Baccharis conferta Kunth. This plant is used to treat gastrointestinal problems, cramps, pain, respiratory problems, and insect bites. A high rate of shoot multiplication was obtained from nodal segments on Murashige and Skoog (MS) culture medium. The shoots regenerated roots without exogenous plant growth regulators (PGRs). All explants of wild leaves on MS medium containing 5 μM of thidiazuron (TDZ) produced friable callus. An organogenic response was achieved after 3 wk of culture when callus segments were transferred to MS medium containing a combination of plant growth regulators (PGRs): either (i) 5 μM indole butyric acid (IBA) + 5 μM kinetin (KIN) or (ii) 0.5 μM IBA + 1.10 μM benzylaminopurine (BAP). The morphogenetic responses of callus were characterized by scanning electron microscopy. Shoots regenerated from callus and formed roots on MS medium without PGRs. The micropropagated plantlets and the organogenic callus showed similar chemical profiles in HPLC-mass spectrometry analyses. The main compounds present in the cultures were caffeoylquinic acids. Only plantlets contained small amounts of triterpenes (erythrodiol and ursolic acid). These findings will be useful for the micropropagation of this important native resource, and for further studies on its biology.

  相似文献   
126.
Empirical evidence suggests that the rich set of ecosystem functions and nature's contributions to people provided by forests depends on tree diversity. Biodiversity–ecosystem functioning research revealed that not only species richness per se but also other facets of tree diversity, such as tree identity, have to be considered to understand the underlying mechanisms. One important ecosystem function in forests is the decomposition of deadwood that plays a vital role in carbon and nutrient cycling and is assumed to be determined by above‐ and belowground interactions. However, the actual influence of tree diversity on wood decay in forests remains inconclusive. Recent studies suggest an important role of microclimate and advocate a systematical consideration of small‐scale environmental conditions. We studied the influence of tree species richness, tree species identity, and microclimatic conditions on wood decomposition in a 12‐year‐old tree diversity experiment in Germany, containing six native species within a tree species richness gradient. We assessed wood mass loss, soil microbial properties, and soil surface temperature in high temporal resolution. Our study shows a significant influence of tree species identity on all three variables. The presence of Scots pine strongly increased wood mass loss, while the presence of Norway spruce decreased it. This could be attributed to structural differences in the litter layer that were modifying the capability of plots to hold the soil surface temperature at night, consequently leading to enhanced decomposition rates in plots with higher nighttime surface temperatures. Therefore, our study confirmed the critical role of microclimate for wood decomposition in forests and showed that soil microbial properties alone were not sufficient to predict wood decay. We conclude that tree diversity effects on ecosystem functions may include different biodiversity facets, such as tree identity, tree traits, and functional and structural diversity, in influencing the abiotic and biotic soil properties.  相似文献   
127.
Bacterial biopolymers such as bacterial cellulose (BC), alginate or polyhydroxyalkanotes (PHAs) have aroused the interest of researchers in many fields, for instance biomedicine and packaging, due to their being biodegradable, biocompatible and renewable. Their properties can easily be tuned by means of microbial biotechnology strategies combined with materials science. This provides them with highly diverse properties, conferring them non-native features. Herein we highlight the enormous structural diversity of these macromolecules, how are they produced, as well as their wide range of potential applications in our daily lives. The emergence of new technologies, such as synthetic biology, enables the creation of next-generation-advanced materials presenting smart functional properties, for example the ability to sense and respond to stimuli as well as the capacity for self-repair. All this has given rise to the recent emergence of biohybrid materials, in which a synthetic component is brought to life with living organisms. Two different subfields have recently garnered particular attention: hybrid living materials (HLMs), such as encapsulation or bioprinting, and engineered living materials (ELMs), in which the material is created bottom-up with the use of microbial biotechnology tools. Early studies showed the strong potential of alginate and PHAs as HLMs, whilst BC constituted the most currently promising material for the creation of ELMs.  相似文献   
128.
A correct timing of growth cessation and dormancy induction represents a critical ecological and evolutionary trade-off between survival and growth in most forest trees (Rehfeldt et al. 1999; Horvath et al. 2003; Howe et al. 2003). We have studied the deciduous tree European Aspen (Populus tremula) across a latitudinal gradient and compared genetic differentiation in phenology traits with molecular markers. Trees from 12 different areas covering 10 latitudinal degrees were cloned and planted in two common gardens. Several phenology traits showed strong genetic differentiation and clinal variation across the latitudinal gradient, with Q(ST) values generally exceeding 0.5. This is in stark contrast to genetic differentiation at several classes of genetic markers (18 neutral SSRs, 7 SSRs located close to phenology candidate genes and 50 SNPs from five phenology candidate genes) that all showed F(ST) values around 0.015. We thus find strong evidence for adaptive divergence in phenology traits across the latitudinal gradient. However, the strong population structure seen at the quantitative traits is not reflected in underlying candidate genes. This result fit theoretical expectations that suggest that genetic differentiation at candidate loci is better described by F(ST) at neutral loci rather than by Q(ST) at the quantitative traits themselves.  相似文献   
129.
New mutations are found among approximately 20% of progeny when one or both parents carry eas allele UCLA191 (eas(UCLA), easily wettable, hydrophobin-deficient, linkage group II). The mutations inactivate the wild-type allele of cya-8 (cytochrome aa3 deficient, linkage group VII), resulting in thin, "transparent" mycelial growth. Other eas alleles fail to produce cya-8 mutant progeny. The recurrent cya-8 mutations are attributed to repeat-induced point mutation (RIP) resulting from a duplicated copy of cya-8+ that was inserted ectopically at eas when the UCLA191 mutation occurred. As expected for RIP, eas(UCLA)-induced cya-8 mutations occur during nuclear proliferation prior to karyogamy. When only one parent is eas(UCLA), the new mutations arise exclusively in eas(UCLA) nuclei. Mutation of cya-8 is suppressed when a long unlinked duplication is present. Stable cya-8 mutations are effectively eliminated in crosses homozygous for rid, a recessive suppressor of RIP. The eas(UCLA) allele is associated with a long paracentric inversion. A discontinuity is present in eas(UCLA) DNA. The eas promoter is methylated in cya-8 progeny of eas(UCLA), presumably by the spreading of methylation beyond the adjoining RIP-inactivated duplication. These findings support a model in which an ectopic insertion that created a mutation at the target site acts as a locus-specific mutator via RIP.  相似文献   
130.
Selenium is a micronutrient that is essential for the production of normal spermatozoa. The selenium-rich plasma protein selenoprotein P (Sepp1) is required for maintenance of testis selenium and for fertility of the male mouse. Sepp1 trafficking in the seminiferous epithelium was studied using conventional methods and mice with gene deletions. Immunocytochemistry demonstrated that Sepp1 is present in vesicle-like structures in the basal region of Sertoli cells, suggesting that the protein is taken up intact. Sepp1 affinity chromatography of a testicular extract followed by mass spectrometry-based identification of bound proteins identified apolipoprotein E receptor 2 (ApoER2) as a candidate testis Sepp1 receptor. In situ hybridization analysis identified Sertoli cells as the only cell type in the seminiferous epithelium with detectable ApoER2 expression. Testis selenium levels in apoER2(-/-) males were sharply reduced from those in apoER2(+/+) males and were comparable with the depressed levels found in Sepp1(-/-) males. However, liver selenium levels were unchanged by deletion of apoER2. Immunocytochemistry did not detect Sepp1 in the Sertoli cells of apoER2(-/-) males, consistent with a defect in the receptor-mediated Sepp1 uptake pathway. Phase contrast microscopy revealed identical sperm defects in apoER2(-/-) and Sepp1(-/-) mice. Co-immunoprecipitation analysis demonstrated an interaction of testis ApoER2 with Sepp1. These data demonstrate that Sertoli cell ApoER2 is a Sepp1 receptor and a component of the selenium delivery pathway to spermatogenic cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号