首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2725篇
  免费   261篇
  国内免费   1篇
  2023年   14篇
  2022年   38篇
  2021年   52篇
  2020年   25篇
  2019年   41篇
  2018年   55篇
  2017年   51篇
  2016年   77篇
  2015年   128篇
  2014年   140篇
  2013年   173篇
  2012年   199篇
  2011年   155篇
  2010年   129篇
  2009年   108篇
  2008年   149篇
  2007年   159篇
  2006年   133篇
  2005年   153篇
  2004年   137篇
  2003年   133篇
  2002年   117篇
  2001年   26篇
  2000年   17篇
  1999年   28篇
  1998年   41篇
  1997年   34篇
  1996年   25篇
  1995年   34篇
  1994年   25篇
  1993年   27篇
  1992年   22篇
  1991年   15篇
  1990年   13篇
  1989年   11篇
  1988年   21篇
  1986年   16篇
  1985年   13篇
  1984年   16篇
  1983年   16篇
  1982年   20篇
  1981年   10篇
  1980年   15篇
  1979年   10篇
  1978年   16篇
  1976年   17篇
  1975年   9篇
  1974年   9篇
  1973年   14篇
  1967年   8篇
排序方式: 共有2987条查询结果,搜索用时 15 毫秒
121.

We established a protocol for the in vitro propagation of Baccharis conferta Kunth. This plant is used to treat gastrointestinal problems, cramps, pain, respiratory problems, and insect bites. A high rate of shoot multiplication was obtained from nodal segments on Murashige and Skoog (MS) culture medium. The shoots regenerated roots without exogenous plant growth regulators (PGRs). All explants of wild leaves on MS medium containing 5 μM of thidiazuron (TDZ) produced friable callus. An organogenic response was achieved after 3 wk of culture when callus segments were transferred to MS medium containing a combination of plant growth regulators (PGRs): either (i) 5 μM indole butyric acid (IBA) + 5 μM kinetin (KIN) or (ii) 0.5 μM IBA + 1.10 μM benzylaminopurine (BAP). The morphogenetic responses of callus were characterized by scanning electron microscopy. Shoots regenerated from callus and formed roots on MS medium without PGRs. The micropropagated plantlets and the organogenic callus showed similar chemical profiles in HPLC-mass spectrometry analyses. The main compounds present in the cultures were caffeoylquinic acids. Only plantlets contained small amounts of triterpenes (erythrodiol and ursolic acid). These findings will be useful for the micropropagation of this important native resource, and for further studies on its biology.

  相似文献   
122.
Bacterial biopolymers such as bacterial cellulose (BC), alginate or polyhydroxyalkanotes (PHAs) have aroused the interest of researchers in many fields, for instance biomedicine and packaging, due to their being biodegradable, biocompatible and renewable. Their properties can easily be tuned by means of microbial biotechnology strategies combined with materials science. This provides them with highly diverse properties, conferring them non-native features. Herein we highlight the enormous structural diversity of these macromolecules, how are they produced, as well as their wide range of potential applications in our daily lives. The emergence of new technologies, such as synthetic biology, enables the creation of next-generation-advanced materials presenting smart functional properties, for example the ability to sense and respond to stimuli as well as the capacity for self-repair. All this has given rise to the recent emergence of biohybrid materials, in which a synthetic component is brought to life with living organisms. Two different subfields have recently garnered particular attention: hybrid living materials (HLMs), such as encapsulation or bioprinting, and engineered living materials (ELMs), in which the material is created bottom-up with the use of microbial biotechnology tools. Early studies showed the strong potential of alginate and PHAs as HLMs, whilst BC constituted the most currently promising material for the creation of ELMs.  相似文献   
123.
A correct timing of growth cessation and dormancy induction represents a critical ecological and evolutionary trade-off between survival and growth in most forest trees (Rehfeldt et al. 1999; Horvath et al. 2003; Howe et al. 2003). We have studied the deciduous tree European Aspen (Populus tremula) across a latitudinal gradient and compared genetic differentiation in phenology traits with molecular markers. Trees from 12 different areas covering 10 latitudinal degrees were cloned and planted in two common gardens. Several phenology traits showed strong genetic differentiation and clinal variation across the latitudinal gradient, with Q(ST) values generally exceeding 0.5. This is in stark contrast to genetic differentiation at several classes of genetic markers (18 neutral SSRs, 7 SSRs located close to phenology candidate genes and 50 SNPs from five phenology candidate genes) that all showed F(ST) values around 0.015. We thus find strong evidence for adaptive divergence in phenology traits across the latitudinal gradient. However, the strong population structure seen at the quantitative traits is not reflected in underlying candidate genes. This result fit theoretical expectations that suggest that genetic differentiation at candidate loci is better described by F(ST) at neutral loci rather than by Q(ST) at the quantitative traits themselves.  相似文献   
124.
New mutations are found among approximately 20% of progeny when one or both parents carry eas allele UCLA191 (eas(UCLA), easily wettable, hydrophobin-deficient, linkage group II). The mutations inactivate the wild-type allele of cya-8 (cytochrome aa3 deficient, linkage group VII), resulting in thin, "transparent" mycelial growth. Other eas alleles fail to produce cya-8 mutant progeny. The recurrent cya-8 mutations are attributed to repeat-induced point mutation (RIP) resulting from a duplicated copy of cya-8+ that was inserted ectopically at eas when the UCLA191 mutation occurred. As expected for RIP, eas(UCLA)-induced cya-8 mutations occur during nuclear proliferation prior to karyogamy. When only one parent is eas(UCLA), the new mutations arise exclusively in eas(UCLA) nuclei. Mutation of cya-8 is suppressed when a long unlinked duplication is present. Stable cya-8 mutations are effectively eliminated in crosses homozygous for rid, a recessive suppressor of RIP. The eas(UCLA) allele is associated with a long paracentric inversion. A discontinuity is present in eas(UCLA) DNA. The eas promoter is methylated in cya-8 progeny of eas(UCLA), presumably by the spreading of methylation beyond the adjoining RIP-inactivated duplication. These findings support a model in which an ectopic insertion that created a mutation at the target site acts as a locus-specific mutator via RIP.  相似文献   
125.
Selenium is a micronutrient that is essential for the production of normal spermatozoa. The selenium-rich plasma protein selenoprotein P (Sepp1) is required for maintenance of testis selenium and for fertility of the male mouse. Sepp1 trafficking in the seminiferous epithelium was studied using conventional methods and mice with gene deletions. Immunocytochemistry demonstrated that Sepp1 is present in vesicle-like structures in the basal region of Sertoli cells, suggesting that the protein is taken up intact. Sepp1 affinity chromatography of a testicular extract followed by mass spectrometry-based identification of bound proteins identified apolipoprotein E receptor 2 (ApoER2) as a candidate testis Sepp1 receptor. In situ hybridization analysis identified Sertoli cells as the only cell type in the seminiferous epithelium with detectable ApoER2 expression. Testis selenium levels in apoER2(-/-) males were sharply reduced from those in apoER2(+/+) males and were comparable with the depressed levels found in Sepp1(-/-) males. However, liver selenium levels were unchanged by deletion of apoER2. Immunocytochemistry did not detect Sepp1 in the Sertoli cells of apoER2(-/-) males, consistent with a defect in the receptor-mediated Sepp1 uptake pathway. Phase contrast microscopy revealed identical sperm defects in apoER2(-/-) and Sepp1(-/-) mice. Co-immunoprecipitation analysis demonstrated an interaction of testis ApoER2 with Sepp1. These data demonstrate that Sertoli cell ApoER2 is a Sepp1 receptor and a component of the selenium delivery pathway to spermatogenic cells.  相似文献   
126.
127.
The Saccharomyces cerevisiae Pif1p helicase is a negative regulator of telomere length that acts by removing telomerase from chromosome ends. The catalytic subunit of yeast telomerase, Est2p, is telomere associated throughout most of the cell cycle, with peaks of association in both G1 phase (when telomerase is not active) and late S/G2 phase (when telomerase is active). The G1 association of Est2p requires a specific interaction between Ku and telomerase RNA. In mutants lacking this interaction, telomeres were longer in the absence of Pif1p than in the presence of wild-type PIF1, indicating that endogenous Pif1p inhibits the active S/G2 form of telomerase. Pif1p abundance was cell cycle regulated, low in G1 and early S phase and peaking late in the cell cycle. Low Pif1p abundance in G1 phase was anaphase-promoting complex dependent. Thus, endogenous Pif1p is unlikely to act on G1 bound Est2p. Overexpression of Pif1p from a non-cell cycle-regulated promoter dramatically reduced viability in five strains with impaired end protection (cdc13–1, yku80Δ, yku70Δ, yku80–1, and yku80–4), all of which have longer single-strand G-tails than wild-type cells. This reduced viability was suppressed by deleting the EXO1 gene, which encodes a nuclease that acts at compromised telomeres, suggesting that the removal of telomerase by Pif1p exposed telomeres to further C-strand degradation. Consistent with this interpretation, depletion of Pif1p, which increases the amount of telomere-bound telomerase, suppressed the temperature sensitivity of yku70Δ and cdc13–1 cells. Furthermore, eliminating the pathway that recruits Est2p to telomeres in G1 phase in a cdc13–1 strain also reduced viability. These data suggest that wild-type levels of telomere-bound telomerase are critical for the viability of strains whose telomeres are already susceptible to degradation.  相似文献   
128.
129.
Gram-negative bacteria release LPS, which activates Toll-like-receptor-4 (TLR4) in the host, initiating an inflammatory response to infection. Infection increases risk for thrombosis. Platelets contribute to defense from infection and to thrombosis. Experiments were designed to determine whether LPS, through TLR4 signaling, affects platelet phenotype. Platelet responses in wild-type (WT) mice and mice that lack the TLR4 gene (dTLR4) were compared following a single nonlethal injection of LPS (0.2 mg/kg iv). Compared with WT mice, mice without TLR4 had fewer circulating platelets with lower RNA content and were less responsive to thrombin-activated expression of P-selectin but were equally sensitive to aggregation or ATP secretion. One week following the LPS injection, the time it takes for the circulating platelet pool to turnover, the number of circulating platelets, thrombin-induced expression of P-selectin, and collagen-activated aggregation were increased comparably in both groups of mice. Therefore, the change of the platelet pool to an activated phenotype 1 wk after a single exposure to LPS appears to arise from a process that is independent of TLR4. The persistence of the effect 1 wk after the injection suggests that the changes reflect an action of LPS on megakaryocytes and their platelet progeny rather than on circulating platelets, which would have been cleared.  相似文献   
130.
Topographical modifications of titanium (Ti) at the nanoscale level generate surfaces that regulate several signaling pathways and cellular functions, which may affect the process of osseointegration. Here, we investigated the participation of integrin αV in the osteogenic capacity of Ti with nanotopography. Machined titanium discs (untreated) were submitted to treatment with H2SO4/H2O2 to produce the nanotopography (nanostructured). First, the greater osteogenic capacity of the nanotopography that increased osteoblast differentiation of mesenchymal stem cells compared with untreated topography was shown. Also, the nanostructured surface increased (regulation ≥ 1.9-fold) the gene expression of 6 integrins from a custom array plate utilized to evaluate the gene expression of 84 genes correlated with cell adhesion signaling pathway, including integrin αV, which is involved in osteoblast differentiation. By silencing integrin αV in MC3T3-E1 cells cultured on nanotopography, the impairment of osteoblast differentiation induced by this surface was observed. In conclusion, it was shown that nanotopography regulates the expression of several components of the cell adhesion signaling pathway and its higher osteogenic potential is, at least in part, due to its ability to upregulate the expression of integrin αV. Together with previous data that showed the participation of integrins α1, β1, and β3 in the nanotopography osseoinduction activity, we have uncovered the pivotal role of this family of membrane receptors in the osteogenic potential of this surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号