首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   12篇
  2024年   1篇
  2023年   6篇
  2022年   5篇
  2021年   9篇
  2020年   13篇
  2019年   8篇
  2018年   8篇
  2017年   11篇
  2016年   15篇
  2015年   18篇
  2014年   15篇
  2013年   22篇
  2012年   25篇
  2011年   18篇
  2010年   8篇
  2009年   10篇
  2008年   17篇
  2007年   15篇
  2006年   4篇
  2005年   7篇
  2004年   4篇
  2003年   7篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
排序方式: 共有262条查询结果,搜索用时 46 毫秒
91.
92.
Bacterial identification on the basis of the highly conserved 16S rRNA (rrs) gene is limited by its presence in multiple copies and a very high level of similarity among them. The need is to look for other genes with unique characteristics to be used as biomarkers. Fifty-one sequenced genomes belonging to 10 different Yersinia species were used for searching genes common to all the genomes. Out of 304 common genes, 34 genes of sizes varying from 0.11 to 4.42 kb, were selected and subjected to in silico digestion with 10 different Restriction endonucleases (RE) (4–6 base cutters). Yersinia species have 6–7 copies of rrs per genome, which are difficult to distinguish by multiple sequence alignments or their RE digestion patterns. However, certain unique combinations of other common gene sequences—carB, fadJ, gluM, gltX, ileS, malE, nusA, ribD, and rlmL and their RE digestion patterns can be used as markers for identifying 21 strains belonging to 10 Yersinia species: Y. aldovae, Y. enterocolitica, Y. frederiksenii, Y. intermedia, Y. kristensenii, Y. pestis, Y. pseudotuberculosis, Y. rohdei, Y. ruckeri, and Y. similis. This approach can be applied for rapid diagnostic applications.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0552-6) contains supplementary material, which is available to authorized users.  相似文献   
93.
In order to reduce the ecotoxicity of paper mill, four different enzymatic pretreatment strategies were investigated in comparison to conventional chemical based processes. In strategy I, xylanase-aided pretreatment of pulp was carried out, and in strategy II, xylanase and laccase-mediator systems were used sequentially. Moreover, to compare the efficiency of Bacillus stearothermophilus xylanase and Ceriporiopsis subvermispora laccase in the reduction of ecotoxicity and pollution, parallel strategies (III and IV) were implemented using commercial enzymes. Conventional CDEOPD1D2 (CD, Cl2 with ClO2; EOP, H2O2 extraction; D1 and D2, ClO2) and X/XLCDEOPD1D2 (X, xylanase; L, laccase) sequences were employed with non-enzymatic and enzymatic strategies, respectively. Acute toxicity was determined by the extent of inhibition of bioluminescence of Vibrio fischeri with different dilutions of the effluent. Two-fold increase was observed in EC50 values for strategy I compared to the control process. On the other hand, sequential application of commercial enzymes resulted in higher acute toxicity compared to lab enzymes. In comparison to the control process, strategy II was the most efficient and successfully reduced 60.1 and 25.8% of biological oxygen demand (BOD) and color of effluents, respectively. We report for the first time the comparative analysis of the ecotoxicity of industrial effluents.  相似文献   
94.
Acute Respiratory Distress Syndrome (ARDS) continues to have a high mortality. Currently, there are no biomarkers that provide reliable prognostic information to guide clinical management or stratify risk among clinical trial participants. The objective of this study was to probe the bronchoalveolar lavage fluid (BALF) proteome to identify proteins that differentiate survivors from non-survivors of ARDS. Patients were divided into early-phase (1 to 7 days) and late-phase (8 to 35 days) groups based on time after initiation of mechanical ventilation for ARDS (Day 1). Isobaric tags for absolute and relative quantitation (iTRAQ) with LC MS/MS was performed on pooled BALF enriched for medium and low abundance proteins from early-phase survivors (n = 7), early-phase non-survivors (n = 8), and late-phase survivors (n = 7). Of the 724 proteins identified at a global false discovery rate of 1%, quantitative information was available for 499. In early-phase ARDS, proteins more abundant in survivors mapped to ontologies indicating a coordinated compensatory response to injury and stress. These included coagulation and fibrinolysis; immune system activation; and cation and iron homeostasis. Proteins more abundant in early-phase non-survivors participate in carbohydrate catabolism and collagen synthesis, with no activation of compensatory responses. The compensatory immune activation and ion homeostatic response seen in early-phase survivors transitioned to cell migration and actin filament based processes in late-phase survivors, revealing dynamic changes in the BALF proteome as the lung heals. Early phase proteins differentiating survivors from non-survivors are candidate biomarkers for predicting survival in ARDS.  相似文献   
95.
Linguistic and genetic studies on Roma populations inhabited in Europe have unequivocally traced these populations to the Indian subcontinent. However, the exact parental population group and time of the out-of-India dispersal have remained disputed. In the absence of archaeological records and with only scanty historical documentation of the Roma, comparative linguistic studies were the first to identify their Indian origin. Recently, molecular studies on the basis of disease-causing mutations and haploid DNA markers (i.e. mtDNA and Y-chromosome) supported the linguistic view. The presence of Indian-specific Y-chromosome haplogroup H1a1a-M82 and mtDNA haplogroups M5a1, M18 and M35b among Roma has corroborated that their South Asian origins and later admixture with Near Eastern and European populations. However, previous studies have left unanswered questions about the exact parental population groups in South Asia. Here we present a detailed phylogeographical study of Y-chromosomal haplogroup H1a1a-M82 in a data set of more than 10,000 global samples to discern a more precise ancestral source of European Romani populations. The phylogeographical patterns and diversity estimates indicate an early origin of this haplogroup in the Indian subcontinent and its further expansion to other regions. Tellingly, the short tandem repeat (STR) based network of H1a1a-M82 lineages displayed the closest connection of Romani haplotypes with the traditional scheduled caste and scheduled tribe population groups of northwestern India.  相似文献   
96.
97.

Background

We assessed the health effects of hexavalent chromium groundwater contamination (from tanneries and chrome sulfate manufacturing) in Kanpur, India.

Methods

The health status of residents living in areas with high Cr (VI) groundwater contamination (N = 186) were compared to residents with similar social and demographic features living in communities having no elevated Cr (VI) levels (N = 230). Subjects were recruited at health camps in both the areas. Health status was evaluated with health questionnaires, spirometry and blood hematology measures. Cr (VI) was measured in groundwater samples by diphenylcarbazide reagent method.

Results

Residents from communities with known Cr (VI) contamination had more self-reports of digestive and dermatological disorders and hematological abnormalities. GI distress was reported in 39.2% vs. 17.2% males (AOR = 3.1) and 39.3% vs. 21% females (AOR = 2.44); skin abnormalities in 24.5% vs. 9.2% males (AOR = 3.48) and 25% vs. 4.9% females (AOR = 6.57). Residents from affected communities had greater RBCs (among 30.7% males and 46.1% females), lower MCVs (among 62.8% males) and less platelets (among 68% males and 72% females) than matched controls. There were no differences in leucocytes count and spirometry parameters.

Conclusions

Living in communities with Cr (VI) groundwater is associated with gastrointestinal and dermatological complaints and abnormal hematological function. Limitations of this study include small sample size and the lack of long term follow-up.  相似文献   
98.

Background

The central Indian state Madhya Pradesh is often called as ‘heart of India’ and has always been an important region functioning as a trinexus belt for three major language families (Indo-European, Dravidian and Austroasiatic). There are less detailed genetic studies on the populations inhabited in this region. Therefore, this study is an attempt for extensive characterization of genetic ancestries of three tribal populations, namely; Bharia, Bhil and Sahariya, inhabiting this region using haploid and diploid DNA markers.

Methodology/Principal Findings

Mitochondrial DNA analysis showed high diversity, including some of the older sublineages of M haplogroup and prominent R lineages in all the three tribes. Y-chromosomal biallelic markers revealed high frequency of Austroasiatic-specific M95-O2a haplogroup in Bharia and Sahariya, M82-H1a in Bhil and M17-R1a in Bhil and Sahariya. The results obtained by haploid as well as diploid genetic markers revealed strong genetic affinity of Bharia (a Dravidian speaking tribe) with the Austroasiatic (Munda) group. The gene flow from Austroasiatic group is further confirmed by their Y-STRs haplotype sharing analysis, where we determined their founder haplotype from the North Munda speaking tribe, while, autosomal analysis was largely in concordant with the haploid DNA results.

Conclusions/Significance

Bhil exhibited largely Indo-European specific ancestry, while Sahariya and Bharia showed admixed genetic package of Indo-European and Austroasiatic populations. Hence, in a landscape like India, linguistic label doesn''t unequivocally follow the genetic footprints.  相似文献   
99.
Sulfatide-reactive type II NKT cells have been shown to regulate autoimmunity and anti-tumor immunity. Although, two major isoforms of sulfatide, C16:0 and C24:0, are enriched in the pancreas, their relative role in autoimmune diabetes is not known. Here, we report that sulfatide/CD1d-tetramer(+) cells accumulate in the draining pancreatic lymph nodes, and that treatment of NOD mice with sulfatide or C24:0 was more efficient than C16:0 in stimulating the NKT cell-mediated transfer of a delay in onset from T1D into NOD.Scid recipients. Using NOD.CD1d(-/-) mice, we show that this delay of T1D is CD1d-dependent. Interestingly, the latter delay or protection from T1D is associated with the enhanced secretion of IL-10 rather than IFN-g by C24:0-treated CD4(+) T cells and the deviation of the islet-reactive diabetogenic T cell response. Both C16:0 and C24:0 sulfatide isoforms are unable to activate and expand type I iNKT cells. Collectively, these data suggest that C24:0 stimulated type II NKT cells may regulate protection from T1D by activating DCs to secrete IL-10 and suppress the activation and expansion of type I iNKT cells and diabetogenic T cells. Our results raise the possibility that C24:0 may be used therapeutically to delay the onset and protect from T1D in humans.  相似文献   
100.
Oncogenic B-RAF V600E mutation is found in 50% of melanomas and drives MEK/ERK pathway and cancer progression. Recently, a selective B-RAF inhibitor, vemurafenib (PLX4032), received clinical approval for treatment of melanoma with B-RAF V600E mutation. However, patients on vemurafenib eventually develop resistance to the drug and demonstrate tumor progression within an average of 7 months. Recent reports indicated that multiple complex and context-dependent mechanisms may confer resistance to B-RAF inhibition. In the study described herein, we generated B-RAF V600E melanoma cell lines of acquired-resistance to vemurafenib, and investigated the underlying mechanism(s) of resistance. Biochemical analysis revealed that MEK/ERK reactivation through Ras is the key resistance mechanism in these cells. Further analysis of total gene expression by microarray confirmed a significant increase of Ras and RTK gene signatures in the vemurafenib-resistant cells. Mechanistically, we found that the enhanced activation of fibroblast growth factor receptor 3 (FGFR3) is linked to Ras and MAPK activation, therefore conferring vemurafenib resistance. Pharmacological or genetic inhibition of the FGFR3/Ras axis restored the sensitivity of vemurafenib-resistant cells to vemurafenib. Additionally, activation of FGFR3 sufficiently reactivated Ras/MAPK signaling and conferred resistance to vemurafenib in the parental B-RAF V600E melanoma cells. Finally, we demonstrated that vemurafenib-resistant cells maintain their addiction to the MAPK pathway, and inhibition of MEK or pan-RAF activities is an effective therapeutic strategy to overcome acquired-resistance to vemurafenib. Together, we describe a novel FGFR3/Ras mediated mechanism for acquired-resistance to B-RAF inhibition. Our results have implications for the development of new therapeutic strategies to improve the outcome of patients with B-RAF V600E melanoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号