首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   10篇
  139篇
  2021年   2篇
  2019年   1篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   7篇
  2012年   6篇
  2011年   6篇
  2010年   7篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1995年   6篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1973年   2篇
  1971年   1篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
111.
112.
Sequence divergence in the internal transcribed spacer region 1 (ITS-1) of the ribosomal DNA locus was assessed in subspecies of the coastal North American tiger beetle, Cicindela dorsalis. The spacer region was amplified using the polymerase chain reaction and cloned for sequencing. Of a total of 50 clones obtained from 12 specimens, 42 clones were different in at least one nucleotide position. In a parsimony analysis of these sequences, the main phylogenetic distinction was found to separate sequences from the Gulf of Mexico and the Atlantic Ocean. Within these two assemblages phylogenetic resolution was low, and the variation within individuals was almost as high as the variation within the entire lineage. The pattern of sequence variation suggests the existence of two forms of the ITS-1 that are maintained on different chromosomes. Polymorphisms of limited geographical distribution could be detected, and 41 additional clones were partly sequenced, to assess the geographic distribution of these polymorphisms in more detail. In a population aggregation analysis, the geographic pattern of ITS-1 distribution was basically congruent with that obtained in earlier studies from mitochondrial DNA in the same C. dorsalis populations.   相似文献   
113.
Live imaging of genetically encoded fluorescent protein reporters is increasingly being used to investigate details of the cellular behaviors that underlie the large-scale tissue rearrangements that shape the embryo. However, the majority of mouse fluorescent reporter strains are based on the green fluorescent protein (GFP). Mouse reporter strains expressing fluorescent colors other than GFP are therefore valuable for co-visualization studies with GFP, where relative positioning and relationship between two different tissues or compartments within cells are being investigated. Here, we report the generation and characterization of a transgenic Afp::mCherry mouse strain in which cis-regulatory elements from the Alpha-fetoprotein (Afp) locus were used to drive expression of the monomeric Cherry red fluorescent protein. The Afp::mCherry transgene is based on and recapitulates reporter expression of a previously described Afp::GFP strain. However, we note that perdurance of mCherry protein is not as prolonged as GFP, making the Afp::mCherry line a more faithful reporter of endogenous Afp expression. Afp::mCherry transgenic mice expressed mCherry specifically in the visceral endoderm and its derivatives, including the visceral yolk sac, gut endoderm, fetal liver, and pancreas of the embryo. The Afp::mCherry reporter was also noted to be expressed in other documented sites of Afp expression including hepatocytes as well as in pancreas, digestive tract, and brain of postnatal mice.  相似文献   
114.
The thermotolerant, ethanol-producing yeast strain Kluyveromyces marxianus IMB3 was grown at 45°C on media containing 2, 4 and 6 % (w/v) pulverized barley straw and supplemented with 2% (v/v) cellulase. Maximum ethanol concentrations produced were 2, 3 and 3.6g/l, respectively. When the pulverized straw was replaced by NaOH pretreated straw (at 2, 4 and 6% (w/v); based on original untreated straw), ethanol concentrations increased to maxima of 3.9, 8, and 12g/l, respectively. The ethanol yields amount to 20g ethanol from 100g of straw.  相似文献   
115.
The subcellular localization of the sorting nexins (SNXs) in higher plants is a matter of controversy. Previous confocal laser scanning microscopy (CLSM studies on root cells from a transgenic Arabidopsis line expressing SNX1-GFP have suggested that this SNX is present on an endosome having characteristics of both the trans-Golgi network (TGN) and the multivesicular body (MVB). In contrast, SNX2a locates exclusively to the TGN when transiently expressed in tobacco mesophyll protoplasts. By performing immunogold electron microscopy on cryofixed Arabidopsis roots, we have tried to clarify the situation. Both SNX1-GFP and endogenous SNX2a locate principally to the TGN. Labeling of MVBs could not be confirmed with any certainty.  相似文献   
116.
Lysine is catabolized via the saccharopine pathway in plants and mammals. In this pathway, lysine is converted to α-aminoadipic-δ-semialdehyde (AASA) by lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH); thereafter, AASA is converted to aminoadipic acid (AAA) by α-aminoadipic-δ-semialdehyde dehydrogenase (AASADH). Here, we investigate the occurrence, genomic organization and functional role of lysine catabolic pathways among prokaryotes. Surprisingly, only 27 species of the 1478 analyzed contain the lkr and sdh genes, whereas 323 species contain aasadh orthologs. A sdh-related gene, identified in 159 organisms, was frequently found contiguously to an aasadh gene. This gene, annotated as lysine dehydrogenase (lysdh), encodes LYSDH an enzyme that directly converts lysine to AASA. Pipecolate oxidase (PIPOX) and lysine-6-aminotransferase (LAT), that converts lysine to AASA, were also found associated with aasadh. Interestingly, many lysdh–aasadh–containing organisms live under hyperosmotic stress. To test the role of the lysine-to-AASA pathways in the bacterial stress response, we subjected Silicibacter pomeroyi to salt stress. All but lkr, sdh, lysdh and aasadh were upregulated under salt stress conditions. In addition, lysine-supplemented culture medium increased the growth rate of S. pomeroyi under high-salt conditions and induced high-level expression of the lysdh–aasadh operon. Finally, transformation of Escherichia coli with the S. pomeroyi lysdh–aasadh operon resulted in increased salt tolerance. The transformed E. coli accumulated high levels of the compatible solute pipecolate, which may account for the salt resistance. These findings suggest that the lysine-to-AASA pathways identified in this work may have a broad evolutionary importance in osmotic stress resistance.  相似文献   
117.
The International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator (Alligator mississippiensis), saltwater crocodile (Crocodylus porosus) and Indian gharial (Gavialis gangeticus) genomes. The status of these projects and our planned analyses are described.  相似文献   
118.
Receptor-mediated sorting processes in the secretory pathway of eukaryotic cells rely on mechanisms to recycle the receptors after completion of transport. Based on this principle, plant vacuolar sorting receptors (VSRs) are thought to recycle after dissociating of receptor–ligand complexes in a pre-vacuolar compartment. This recycling is mediated by retromer, a cytosolic coat complex that comprises sorting nexins and a large heterotrimeric subunit. To analyse retromer-mediated VSR recycling, we have used a combination of immunoelectron and fluorescence microscopy to localize the retromer components sorting nexin 1 (SNX1) and sorting nexin 2a (SNX2a) and the vacuolar sorting protein VPS29p. All retromer components localize to the trans -Golgi network (TGN), which is considered to represent the early endosome of plants. In addition, we show that inhibition of retromer function in vivo by expression of SNX1 or SNX2a mutants as well as transient RNAi knockdown of all sorting nexins led to accumulation of the VSR BP80 at the TGN. Quantitative protein transport studies and live-cell imaging using fluorescent vacuolar cargo molecules revealed that arrival of these VSR ligands at the vacuole is not affected under these conditions. Based on these findings, we propose that the TGN is the location of retromer-mediated recycling of VSRs, and that transport towards the lytic vacuole downstream of the TGN is receptor-independent and occurs via maturation, similar to transition of the early endosome into the late endosome in mammalian cells.  相似文献   
119.
Stresses increasing the load of unfolded proteins that enter the endoplasmic reticulum (ER) trigger a protective response termed the unfolded protein response (UPR). Stromal cell-derived factor2 (SDF2)-type proteins are highly conserved throughout the plant and animal kingdoms. In this study we have characterized AtSDF2 as crucial component of the UPR in Arabidopsis thaliana. Using a combination of biochemical and cell biological methods, we demonstrate that SDF2 is induced in response to ER stress conditions causing the accumulation of unfolded proteins. Transgenic reporter plants confirmed induction of SDF2 during ER stress. Under normal growth conditions SDF2 is highly expressed in fast growing, differentiating cells and meristematic tissues. The increased production of SDF2 due to ER stress and in tissues that require enhanced protein biosynthesis and secretion, and its association with the ER membrane qualifies SDF2 as a downstream target of the UPR. Determination of the SDF2 three-dimensional crystal structure at 1.95 Å resolution revealed the typical β-trefoil fold with potential carbohydrate binding sites. Hence, SDF2 might be involved in the quality control of glycoproteins. Arabidopsis sdf2 mutants display strong defects and morphological phenotypes during seedling development specifically under ER stress conditions, thus establishing that SDF2-type proteins play a key role in the UPR.  相似文献   
120.
Sequence variation in the middle part of the small-subunit rRNA was studied for representatives of the major groups in the family Cicindelidae (Coleoptera). All taxa exhibited a much expanded segment in variable region V4 compared to D. melanogaster. This expanded segment was not found in other groups of beetles, including three taxa in the closely related Carabidae. Secondary structure predictions indicate that the expanded segment folds into a single stem-loop structure in all taxa. Despite its structural conservation, the fragment differs strongly in primary sequence, even between closely related sister taxa. Several features of these sequences are consistent with slippage replication as the mechanism that has generated this sequence variation: the level of internal sequence repetition as measured by the relative simplicity factor (RSF), its variation in length between close relatives, and the strong nucleotide bias compared to the remainder of the gene. With few exceptions, there was also a correlation between sequence length and the level of sequence repetition, frequently interpreted as the result of slippage. Phylogenies inferred from the expansion segment were not consistent with existing hypotheses from other molecular data for the group. This indicates that DNA sequences in this region are not homologous throughout the entire Cicindelidae, but it leaves open the possibility that this expansion segment can be used for phylogeny reconstruction within subgroups. The implications of a phylogenetic approach to the understanding of slippage-like evolution are discussed.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号