首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   5篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   7篇
  2015年   6篇
  2014年   15篇
  2013年   8篇
  2012年   13篇
  2011年   7篇
  2010年   9篇
  2009年   6篇
  2008年   10篇
  2007年   16篇
  2006年   13篇
  2005年   7篇
  2004年   11篇
  2003年   6篇
  2002年   6篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1988年   1篇
排序方式: 共有169条查询结果,搜索用时 46 毫秒
21.
22.
The aim of this study was to compare the effects of the mixture of Lactobacillus delbrueckii subsp. rhamnosus strain GG, Bifidobacterium lactis Bb12, and inulin on intestinal populations of lactobacilli, bifidobacteria, and enterobacteria in adult and elderly rats fed the same (in quality and quantity) diet. The portal plasma levels of two neuropeptides, neuropeptide Y (NPY) and peptide YY (PYY), were also evaluated to assess the physiological consequences of the synbiotic treatment for the gastrointestinal (GI) tracts of rats of different ages. Adult (n = 24) and elderly (n = 24) male rats were fed the AIN-93 M maintenance diet. After 2 weeks of adaptation, the diet of 12 rats of each age group was supplemented with 8% inulin and with strains GG and Bb12 to provide 2.2 x 10(9) CFU of each strain g(-1) of the diet. Blood and different regions of the GI tract were sampled from all rats after 21 days of the treatment. Treatment with the mixture of strain GG, strain BB12, and inulin induced significantly different changes in the numbers of lactobacilli, bifidobacteria, and enterobacteria of the stomach, small intestine, cecum, and colon microflora. Moreover, the GG, BB12, and inulin mixture increased the concentrations of NPY and PYY for adult rats. For the elderly animals, the PYY concentration was not changed, while the NPY concentration was decreased by treatment with the GG, BB12, and inulin mixture. The results of the present study indicate that the physiological status of the GI tract, and not just diet, has a major role in the regulation of important groups of the GI bacteria community, since even the outcome of the dietary modification with synbiotics depends on the ages of the animals.  相似文献   
23.
Schwann cell (SC) transplantation is currently being discussed as a strategy that may promote functional recovery in patients with multiple sclerosis (MS) and other inflammatory demyelinating diseases of the central nervous system (CNS). However this assumes they will not only survive but also remyelinate demyelinated axons in the chronically inflamed CNS. To address this question we investigated the fate of transplanted SCs in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) in the Dark Agouti rat; an animal model that reproduces the complex inflammatory demyelinating immunopathology of MS. We now report that SCs expressing green fluorescent protein (GFP-SCs) allografted after disease onset not only survive but also migrate to remyelinate lesions in the inflamed CNS. GFP-SCs were detected more frequently in the parenchyma after direct injection into the spinal cord, than via intra-thecal delivery into the cerebrospinal fluid. In both cases the transplanted cells intermingled with astrocytes in demyelinated lesions, aligned with axons and by twenty one days post transplantation had formed Pzero protein immunoreactive internodes. Strikingly, GFP-SCs transplantation was associated with marked decrease in clinical disease severity in terms of mortality; all GFP-SCs transplanted animals survived whilst 80% of controls died within 40 days of disease.  相似文献   
24.
The non-structural proteins (NS) of the parvovirus family are highly conserved multi-functional molecules that have been extensively characterized and shown to be integral to viral replication. Along with NTP-dependent helicase activity, these proteins carry within their sequences domains that allow them to bind DNA and act as nucleases in order to resolve the concatameric intermediates developed during viral replication. The parvovirus B19 NS1 protein contains sequence domains highly similar to those previously implicated in the above-described functions of NS proteins from adeno-associated virus (AAV), minute virus of mice (MVM) and other non-human parvoviruses. Previous studies have shown that transient transfection of B19 NS1 into human liver carcinoma (HepG2) cells initiates the intrinsic apoptotic cascade, ultimately resulting in cell death. In an effort to elucidate the mechanism of mammalian cell demise in the presence of B19 NS1, we undertook a mutagenesis analysis of the protein's endonuclease domain. Our studies have shown that, unlike wild-type NS1, which induces an accumulation of DNA damage, S phase arrest and apoptosis in HepG2 cells, disruptions in the metal coordination motif of the B19 NS1 protein reduce its ability to induce DNA damage and to trigger S phase arrest and subsequent apoptosis. These studies support our hypothesis that, in the absence of replicating B19 genomes, NS1-induced host cell DNA damage is responsible for apoptotic cell death observed in parvoviral infection of non-permissive mammalian cells.  相似文献   
25.
2-Oxoamides based on long chain beta-amino acids were synthesized. 1-Benzyl substituted long chain amines, needed for such synthesis, were synthesized starting from Boc-phenylalaninol. The oxidative conversion of a phenyl group to a carboxyl group was used as the key transformation synthetic step. The compounds synthesized were studied for their activity against GIVA PLA(2), and were proven to be weak inhibitors.  相似文献   
26.
27.
Changes in fatty acids of leaf polar lipids: monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) in maize seedlings of chiling-sensitive (CS) CM 7 and Co 151 lines and chilling-tolerant (CT) S 215 and EP 1 lines upon chilling for either 4 or 6 days in the dark and after rewarming for 4 days at original growth conditions were studied. The content of free fatty acids (FFA) in control leaves as well as alterations in the proportion of major fatty acids, unsaturation ratio (UR), double bond index (DBI) and changes in the proportion of heigh-temperature melting of both phosphatidylglycerol (htm-PG) and sulfoquinovosylglycerol (htm-SQDG) after chilling and rewarming of seedlings were estimated. FFA content in intact leaves was 2–3-fold higher in the chilling susceptible CM 7 line than in the other three inbreeds studied. After chilling for 6 days the level of FFA increased only in CM 7 and S 215 lines by about 30 %. Upon rewarming seedlings chilled for 6 days the level of FFA increased about two-fold in CS Co 151 line and CT EP 1 line and decreased in CS CM 7 line. Limited accumulation of FFAs during chilling and post-chilling rewarming of maize seedlings, did not correspond to the extent of polar lipid breakdown (Kaniuga et al. 1999b) probably due to the contribution of active oxidative systems to the peroxidation of fatty acids under these conditions. During rewarming seedlings chilled for 6 days major changes were observed in decrease of 18:3 and an increase of 16:0 in all four polar lipids studied with more pronounced changes in CS than CT lines. Similarly, in CS inbreeds a decrease in UR of fatty acids in MGDG, DGDG and SQDG after post-chilling rewarming was greater than in CT lines. Proportion of htm-fraction in both PG and SQDG increased after post-chilling rewarming in all four inbreeds, however to a lesser extent in CT than CS lines. A similar pattern of changes in DBI in CS and CT maize seedlings was observed in glycolipid and combine lipid classes. More extensive degradation of polar lipids in CS than CT maize inbreeds following galactolipase action in chloroplasts (Kaniuga et al. 1998) provides FFAs for initiation of peroxidation by LOX which is manifested by decrease of UR and DBI. This sequence of reactions during chilling and post-chilling rewarming appears to be a main route of fatty acids peroxidation responsible for secondary events involved in chilling injury. In addition, the extent of these changes differentiates CS and CT inbreeds. Contribution of esterified fatty acids in thylakoid lipids to direct peroxidation, may be of minor importance.  相似文献   
28.
Four minimal (119-145 residue) active site fragments of Escherichia coli Class II histidyl-tRNA synthetase were constructed, expressed as maltose-binding protein fusions, and assayed for histidine activation as fusion proteins and after TEV cleavage, using the (32)PP(i) exchange assay. All contain conserved Motifs 1 and 2. Two contain an N-terminal extension of Motif 1 and two contain Motif 3. Five experimental results argue strongly for the authenticity of the observed catalytic activities: (i) active site titration experiments showing high (~0.1-0.55) fractions of active molecules, (ii) release of cryptic activity by TEV cleavage of the fusion proteins, (iii) reduced activity associated with an active site mutation, (iv) quantitative attribution of increased catalytic activity to the intrinsic effects of Motif 3, the N-terminal extension and their synergistic effect, and (v) significantly altered K(m) values for both ATP and histidine substrates. It is therefore plausible that neither the insertion domain nor Motif 3 were essential for catalytic activity in the earliest Class II aminoacyl-tRNA synthetases. The mean rate enhancement of all four cleaved constructs is ~10(9) times that of the estimated uncatalyzed rate. As observed for the tryptophanyl-tRNA synthetase (TrpRS) Urzyme, these fragments bind ATP tightly but have reduced affinity for cognate amino acids. These fragments thus likely represent Urzymes (Ur = primitive, original, earliest + enzyme) comparable in size and catalytic activity and coded by sequences proposed to be antisense to that coding the previously described Class I TrpRS Urzyme. Their catalytic activities provide metrics for experimental recapitulation of very early evolutionary events.  相似文献   
29.
BackgroundWhile depression is a frequent psychiatric comorbid condition in diabetes and has significant clinical impact, the syndromal profile of depression and anxiety symptoms has not been examined in detail.AimsTo determine the syndromal pattern of the depression and anxiety spectrum in a large series of patients with type 2 diabetes, as determined using a data-driven approach based on latent class analysis (LCA).MethodType 2 diabetes participants from the observational community-based Fremantle Diabetes Study Phase II underwent assessment of lifetime depression using the Brief Lifetime Depression Scale, the Patient Health Questionnaire 9-item version (PHQ-9) for current depression symptoms, and the Generalized Anxiety Disorder Scale that was specifically developed and validated for this study. The main outcome measure was classes of patients with a specific syndromal profile of depression and anxiety symptoms based on LCA.ResultsLCA identified four classes that were interpreted as “major anxious depression”, “minor anxious depression”, “subclinical anxiety”, and “no anxious depression”. All nine DSM-IV/5 diagnostic criteria for major depression identified a class with a high frequency of major depression. All symptoms of anxiety had similar high probabilities as symptoms of depression for the “major depression-anxiety” class. There were significant differences between classes in terms of history of depression and anxiety, use of psychoactive medication, and diabetes-related variables.ConclusionsPatients with type 2 diabetes show specific profiles of depression and anxiety. Anxiety symptoms are an integral part of major depression in type 2 diabetes. The different classes identified here provide empirically validated phenotypes for future research.  相似文献   
30.
Multiple system atrophy (MSA) is a fatal rapidly progressive α-synucleinopathy, characterized by α-synuclein accumulation in oligodendrocytes. It is accepted that the pathological α-synuclein accumulation in the brain of MSA patients plays a leading role in the disease process, but little is known about the events in the early stages of the disease. In this study we aimed to define potential roles of the miRNA-mRNA regulatory network in the early pre-motor stages of the disease, i.e., downstream of α-synuclein accumulation in oligodendroglia, as assessed in a transgenic mouse model of MSA. We investigated the expression patterns of miRNAs and their mRNA targets in substantia nigra (SN) and striatum, two brain regions that undergo neurodegeneration at a later stage in the MSA model, by microarray and RNA-seq analysis, respectively. Analysis was performed at a time point when α-synuclein accumulation was already present in oligodendrocytes at neuropathological examination, but no neuronal loss nor deficits of motor function had yet occurred. Our data provide a first evidence for the leading role of gene dysregulation associated with deficits in immune and inflammatory responses in the very early, non-symptomatic disease stages of MSA. While dysfunctional homeostasis and oxidative stress were prominent in SN in the early stages of MSA, in striatum differential gene expression in the non-symptomatic phase was linked to oligodendroglial dysfunction, disturbed protein handling, lipid metabolism, transmembrane transport and altered cell death control, respectively. A large number of putative miRNA-mRNAs interaction partners were identified in relation to the control of these processes in the MSA model. Our results support the role of early changes in the miRNA-mRNA regulatory network in the pathogenesis of MSA preceding the clinical onset of the disease. The findings thus contribute to understanding the disease process and are likely to pave the way towards identifying disease biomarkers for early diagnosis of MSA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号