首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5664篇
  免费   418篇
  国内免费   1篇
  2023年   52篇
  2022年   87篇
  2021年   172篇
  2020年   114篇
  2019年   135篇
  2018年   182篇
  2017年   166篇
  2016年   269篇
  2015年   333篇
  2014年   349篇
  2013年   390篇
  2012年   547篇
  2011年   449篇
  2010年   250篇
  2009年   244篇
  2008年   319篇
  2007年   260篇
  2006年   274篇
  2005年   264篇
  2004年   249篇
  2003年   212篇
  2002年   192篇
  2001年   41篇
  2000年   41篇
  1999年   47篇
  1998年   59篇
  1997年   41篇
  1996年   33篇
  1995年   29篇
  1994年   31篇
  1993年   26篇
  1992年   22篇
  1991年   20篇
  1990年   16篇
  1989年   11篇
  1988年   10篇
  1987年   6篇
  1986年   13篇
  1985年   17篇
  1984年   6篇
  1983年   10篇
  1982年   15篇
  1981年   12篇
  1978年   11篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
  1969年   4篇
  1968年   6篇
  1961年   4篇
排序方式: 共有6083条查询结果,搜索用时 17 毫秒
961.

Aims

This study aimed at assessing whether patch type (i.e., under-shrub soil patch and inter-shrub soil patch) has an effect on soil microbes and how different shrub species altered the soil microbes through understanding soil microbial activity, biomass, and community structure.

Methods

We characterized the soil microbes in under-shrub and inter-shrub soil patches in three shrublands (Artemisia ordosica, Salix psammophila, and Caragana microphylla), respectively, in the Mu Us Desert, China, using microbial activity indicators, chloroform fumigation-extraction analysis, and high-throughput 16S rRNA gene sequencing.

Results

Members of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Bacteroidetes, Chloroflexi, Firmicutes, and Gemmatimonadetes were dominant. Inter-shrub soil patch differed from under-shrub soil patch in soil bacterial composition, microbial enzyme activity, and biomass, but not in diversity. Soil collected in A. ordosica shrubland exhibited the highest microbial enzyme activity, biomass, and diversity. Shrub species had significant effects on community structure, primarily the relative abundance of Proteobacteria, Actinobacteria, and Bacteroidetes.

Conclusions

The results indicated that both shrub species and patch type had effects on soil microbial communities. In shrub-dominated desert ecosystems, spatial heterogeneity of soil nutrients and moisture might not be the main factors underlying variations in bacterial diversity. The different compositions of microbial communities in various shrublands provide a foundation for further research into the mechanisms of soil organic carbon accumulation.
  相似文献   
962.
Background and aims

Plants differ in their ability to use different nitrogen (N) chemical forms, these differences can be related to their ecology and drive community structure. The capacity to uptake intact organic N has been observed in plants of several ecosystems. However, soil organic N uptake by Mediterranean plants is unknown despite organic N being abundant in Mediterranean ecosystems. We compare the uptake of different N forms in two widespread coexisting Mediterranean forest trees with contrasting ecophysiological characteristics: Quercus ilex and Pinus halepensis.

Methods

To estimate root uptake rate of each N form we used equimolar solutions (1 mM N) of 15NO3 ?, 15NH4 + and 15N-13C glycine.

Results

NH4 + and glycine were taken up at a similar rate, but faster than NO3 ? in both species. Intact dual labeled glycine was found in both species, demonstrating that both species can absorb intact organic N.

Conclusions

Despite their ecological differences, both species had similar preference for N forms suggesting no fundamental niche complementarity for N uptake. The higher preference for NH4 + and glycine over NO3 ? possibly reflects adaptation to the differing proportions of N forms in Mediterranean soils.

  相似文献   
963.
Soil salinity is mainly caused by excessive use of fertilizers and the use of poor quality water, and adversely affected crop growth especially when grown in protected environments. Soil salinity causes salt stress in plants, which inhibits plant growth, leading to morphological, metabolic and physiological changes. Though it is a major problem occurs more frequently, there is less information on the behavior of calla lily (Zantedeschia aethiopica) under these conditions, and most studies are conducted with other species of the genus Zantesdeschia. Therefore, this study aimed to evaluate ecophysiological, biochemical and anatomical growth responses of calla lily plants to salt stress. Rhizomes were grown in trays containing coconut fiber as a substrate and treated with 0, 25, 50, 75 and 100 mM NaCl to induce stress. A decrease in plant height was observed, as well as in the number of tillers and leaves, main root length, fresh and dry matter of the shoot and root system. A reduction in photosynthetic rate, stomatal conductance and transpiration rate was observed at 60 days. However, after 90 days, the photosynthetic rate was unchanged, with increased stomatal conductance and transpiration rate for plants exposed to 75 mM NaCl. Salt stress caused a higher accumulation of carbohydrates in shoots and roots. Thus, high concentrations of NaCl affect the development of calla lily, indicating that this species is susceptible to salt stress.  相似文献   
964.
Yeasts capable of growing and surviving at high temperatures are regarded as thermotolerant. For appropriate functioning of cellular processes and cell survival, the maintenance of an optimal redox state is critical of reducing and oxidizing species. We studied mitochondrial functions of the thermotolerant Kluyveromyces marxianus SLP1 and the mesophilic OFF1 yeasts, through the evaluation of its mitochondrial membrane potential (ΔΨm), ATPase activity, electron transport chain (ETC) activities, alternative oxidase activity, lipid peroxidation. Mitochondrial membrane potential and the cytoplasmic free Ca2+ ions (Ca2+ cyt) increased in the SLP1 yeast when exposed to high temperature, compared with the mesophilic yeast OFF1. ATPase activity in the mesophilic yeast diminished 80% when exposed to 40° while the thermotolerant SLP1 showed no change, despite an increase in the mitochondrial lipid peroxidation. The SLP1 thermotolerant yeast exposed to high temperature showed a diminution of 33% of the oxygen consumption in state 4. The uncoupled state 3 of oxygen consumption did not change in the mesophilic yeast when it had an increase of temperature, whereas in the thermotolerant SLP1 yeast resulted in an increase of 2.5 times when yeast were grown at 30o, while a decrease of 51% was observed when it was exposed to high temperature. The activities of the ETC complexes were diminished in the SLP1 when exposed to high temperature, but also it was distinguished an alternative oxidase activity. Our results suggest that the mitochondria state, particularly ETC state, is an important characteristic of the thermotolerance of the SLP1 yeast strain.  相似文献   
965.
Southern European columbines (genus Aquilegia) are involved in active processes of diversification, and the Iberian Peninsula offers a privileged observatory to witness the process. Studies on Iberian columbines have provided significant advances on species diversification, but we still lack a complete perspective of the genetic diversification in the Iberian scenario. This work explores how genetic diversity of the genus Aquilegia is geographically structured across the Iberian Peninsula. We used Bayesian clustering methods, principal coordinates analyses, and NJ phenograms to assess the genetic relationships among 285 individuals from 62 locations and detect the main lineages. Genetic diversity of Iberian columbines consists of five geographically structured lineages, corresponding to different Iberian taxa. Differentiation among lineages shows particularly complex admixture patterns at Northeast and highly homogeneous toward Northwest and Southeast. This geographic genetic structure suggests the existence of incomplete lineage sorting and interspecific hybridization as could be expected in recent processes of diversification under the influence of quaternary postglacial migrations. This scenario is consistent with what is proposed by the most recent studies on European and Iberian columbines, which point to geographic isolation and divergent selection by habitat specialization as the main diversification drivers of the Iberian Aquilegia complex.  相似文献   
966.

Background

Increased computational resources have made individual based models popular for modelling epidemics. They have the advantage of incorporating heterogeneous features, including realistic population structures (like e.g. households). Existing stochastic simulation studies of epidemics, however, have been developed mainly for incorporating single pathogen scenarios although the effect of different pathogens might directly or indirectly (e.g. via contact reductions) effect the spread of each pathogen. The goal of this work was to simulate a stochastic agent based system incorporating the effect of multiple pathogens, accounting for the household based transmission process and the dependency among pathogens.

Methods

With the help of simulations from such a system, we observed the behaviour of the epidemics in different scenarios. The scenarios included different household size distributions, dependency versus independency of pathogens, and also the degree of dependency expressed through household isolation during symptomatic phase of individuals. Generalized additive models were used to model the association between the epidemiological parameters of interest on the variation in the parameter values from the simulation data. All the simulations and statistical analyses were performed using R 3.4.0.

Results

We demonstrated the importance of considering pathogen dependency using two pathogens, and showing the difference when considered independent versus dependent. Additionally for the general scenario with more pathogens, the assumption of dependency among pathogens and the household size distribution in the population cohort was found to be effective in containing the epidemic process. Additionally, populations with larger household sizes reached the epidemic peak faster than societies with smaller household sizes but dependencies among pathogens did not affect this outcome significantly. Larger households had more infections in all population cohort examples considered in our simulations. Increase in household isolation coefficient for pathogen dependency also could control the epidemic process.

Conclusion

Presence of multiple pathogens and their interaction can impact the behaviour of an epidemic across cohorts with different household size distributions. Future household cohort studies identifying multiple pathogens will provide useful data to verify the interaction processes in such an infectious disease system.
  相似文献   
967.
The reliability of analyses using real-time quantitative polymerase chain reaction (RT-qPCR) depends on the selection of appropriate reference genes to correct for sample-to-sample and run-to-run variations. The aim of the present study was to select the most suitable reference genes for gene expression analyses in tissue samples from coffee, Coffea arabica L. (Arabica) grown under well-watered (WW) and water-deficit (WD) conditions and C. canephora Pierre ex A. Froehner (Robusta) grown under WW conditions. Expression profiles and stabilities were evaluated for 12 reference genes in different tissues from C. arabica and for 8 genes in tissues from C. canephora. The web-based RefFinder tool, which combines the geNorm, NormFinder, Bestkeeper, and Delta-Ct algorithms, was employed to assess the stability of the tested genes. The most stable reference genes identified for all tissues grouped (WW/WD) of C. arabica were clathrin adaptor protein medium subunit (AP47), ubiquitin (UBQ), 60S ribosomal protein L39 (RPL39), and elongation factor 1α (EF1α), while class III alcohol dehydrogenase (ADH2), β-actin (ACT), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and ubiquitin (UBQ) genes were the most stable for all tissues grouped (WW) of C. canephora tissues. Validation by the expression level analysis of CaACO-like demonstrated that the use of the best and the worst set of reference genes produced different expression results. The results reinforce the general assumption that there is no universal reference gene and that it is essential to select the most appropriate gene for each individual experiment to apply adequate normalization procedures of RT-qPCR data.  相似文献   
968.
Use of probiotic therapy is an active area of investigation to treat intestinal disorders. The clinical benefits of the I3.1 probiotic formula (Lactobacillus plantarum (CECT7484, CECT7485) and P. acidilactici (CECT7483)) were demonstrated in irritable bowel syndrome (IBS) patients in a randomized, double-blind, placebo-controlled clinical trial. The aim of this study was to evaluate the therapeutic effects of I3.1 in two experimental models of colitis, a dextran sulfate sodium (DSS)-induced colitis model and an interleukin (IL)-10-deficient mice model. Colitis was induced in 32 8-week-old Balb/c mice by administering 3% (w/v) DSS in drinking water for 5 days. Probiotics were administered orally (I3.1 or VSL#3, 1 × 109 CFU daily) for 10 days before the administration of DSS. Also, probiotics (I3.1 or VSL#3, 1 × 109 CFU daily) were administered orally to 36 6-week-old C57B6J IL-10(?/?) mice for 10 weeks. Body weight was recorded daily. Colon samples were harvested for histological examination and cytokine measurements. Body weight after DSS administration did not change in the I3.1 group, whereas the VSL#3 group had weight loss. Also, I3.1 normalized IL-6 to levels similar to that of healthy controls and significantly increased the reparative histologic score. In the IL-10-deficient model, both VSL#3 and I3.1 reduced the severity of colitis compared to untreated controls, and I3.1 significantly reduced the levels of IFN-γ compared to the other two groups. In conclusion, I3.1 displays a protective effect on two murine models of experimental colitis. Results suggest that the mechanism of action could be different from VSL#3.  相似文献   
969.
Detergents are amphiphilic molecules widely used to solubilize biological membranes and/or extract their components. Nevertheless, because of the complex composition of biomembranes, their solubilization by detergents has not been systematically studied. In this review, we address the solubilization of erythrocytes, which provide a relatively simple, robust and easy to handle biomembrane, and of biomimetic models, to stress the role of the lipid composition on the solubilization process. First, results of a systematic study on the solubilization of human erythrocyte membranes by different series of non-ionic (Triton, CxEy, Brij, Renex, Tween), anionic (bile salts) and zwitterionic (ASB, CHAPS) detergents are shown. Such quantitative approach allowed us to propose Re sat—the effective detergent/lipid molar ratio in the membrane for the onset of hemolysis as a new parameter to classify the solubilization efficiency of detergents. Second, detergent-resistant membranes (DRMs) obtained as a result of the partial solubilization of erythrocytes by TX-100, C12E8 and Brij detergents are examined. DRMs were characterized by their cholesterol, sphingolipid and specific proteins content, as well as lipid packing. Finally, lipid bilayers of tuned lipid composition forming liposomes were used to investigate the solubilization process of membranes of different compositions/phases induced by Triton X-100. Optical microscopy of giant unilamellar vesicles revealed that pure phospholipid membranes are fully solubilized, whereas the presence of cholesterol renders the mixture partially or even fully insoluble, depending on the composition. Additionally, Triton X-100 induced phase separation in raft-like mixtures, and selective solubilization of the fluid phase only.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号