首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   628篇
  免费   21篇
  649篇
  2022年   4篇
  2019年   3篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   12篇
  2013年   12篇
  2012年   25篇
  2011年   30篇
  2010年   20篇
  2009年   12篇
  2008年   29篇
  2007年   15篇
  2006年   20篇
  2005年   22篇
  2004年   36篇
  2003年   24篇
  2002年   22篇
  2001年   28篇
  2000年   23篇
  1999年   23篇
  1998年   9篇
  1996年   2篇
  1995年   2篇
  1993年   8篇
  1992年   9篇
  1991年   20篇
  1990年   15篇
  1989年   19篇
  1988年   28篇
  1987年   19篇
  1986年   22篇
  1985年   14篇
  1984年   14篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   12篇
  1977年   2篇
  1976年   4篇
  1975年   5篇
  1974年   5篇
  1973年   4篇
  1972年   10篇
  1971年   5篇
  1970年   4篇
  1968年   9篇
  1967年   3篇
  1966年   5篇
排序方式: 共有649条查询结果,搜索用时 0 毫秒
21.
The lipopolysaccharide of Bordetella hinzii was analyzed after various chemical degradations by NMR spectroscopy and MALDI mass spectrometry, and the following structure of the polysaccharide chain was determined: 4-O-Me-alpha-GalpNAc3NAcAN-(1-->[-->4)-beta-GlcpNAc3NAcAN-(1-->4)-beta-GlcpNAc3NAcAN-(1-->4)-alpha-GalpNAc3NAcAN-(1-](n)-where GlcNAc3NAcAN and GalNAc3NAcAN stand for 2,3-diacetamido-2,3-dideoxy-glucuronamide and -galacturonamide, respectively. The polysaccharide chain is terminated with a 4-O-methylated GalNAc3NAcAN residue and is rather short (n < or = 5).  相似文献   
22.
The structure of the lipid A and core region of the lipopolysaccharide (LPS) from Francisella tularensis (ATCC 29684) was analysed using NMR, mass spectrometry and chemical methods. The LPS contains a beta-GlcN-(1-6)-GlcN lipid A backbone, but has a number of unusual structural features; it apparently has no substituent at O-1 of the reducing end GlcN residue in the lipid part in the major part of the population, no substituents at O-3 and O-4 of beta-GlcN, and no substituent at O-4 of the Kdo residue. The largest oligosaccharide, isolated after strong alkaline deacylation of NaBH4 reduced LPS had the following structure: where Delta-GalNA-(1-3)-beta-QuiNAc represents a modified fragment of the O-chain repeating unit. Two shorter oligosaccharides lacking the O-chain fragment were also identified. A minor amount of the disaccharide beta-GlcN-(1-6)-alpha-GlcN-1-P was isolated from the same reaction mixture, indicating the presence of free lipid A, unsubstituted by Kdo and with phosphate at the reducing end. The lipid A, isolated from the products of mild acid hydrolysis, had the structure 2-N-(3-O-acyl4-acyl2)-beta-GlcN-(1-6)-2-N-acyl1-3-O-acyl3-GlcN where acyl1, acyl2 and acyl3 are 3-hydroxyhexadecanoic or 3-hydroxyoctadecanoic acids, acyl4 is tetradecanoic or (minor) hexadecanoic acids. No phosphate substituents were found in this compound. OH-1 of the reducing end glucosamine, and OH-3 and OH-4 of the nonreducing end glucosamine residues were not substituted. LPS of F. tularensis exhibits unusual biological properties, including low endoxicity, which may be related to its unusual lipid A structure.  相似文献   
23.
Repeated dissociation of the approximately 3600-kDa hexagonal bilayer extracellular hemoglobin of Lumbricus terrestris in 4 M urea followed by gel filtration at neutral pH produces a subunit that retains the oxygen affinity of the native molecule (approximately 12 torr), but only two-thirds of the cooperativity (nmax = 2.1 +/- 0.2 versus 3.3 +/- 0.3). The mass of this subunit was estimated to be 202 +/- 15 kDa by gel filtration and 202 +/- 26 kDa from mass measurements of unstained freeze-dried specimens by scanning transmission electron microscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this subunit showed that it consists predominantly of the heme-containing subunits M (chain I, 17 kDa) and T (disulfide-bonded chains II-IV, 50 kDa). Mixing of subunits M and T isolated concurrently with the 200-kDa subunit resulted in partial association into particles that had a mass of 191 +/- 13 kDa determined by gel filtration and 200 +/- 38 kDa determined by scanning transmission electron microscopy and whose oxygen affinity and cooperativity were the same as those of the 200-kDa subunit. The results imply that the 200-kDa subunit is a dodecamer of globin chains, consisting of three copies each of subunits M and T (3 x chains (I + II + III + IV], in good agreement with the mass of 209 kDa calculated from the amino acid sequences of the four chains, and represents the largest functional subunit of Lumbricus hemoglobin. Twelve copies of this subunit would account for two-thirds of the total mass of the molecule, as suggested earlier (Vinogradov, S. N., Lugo, S. L., Mainwaring, M. G., Kapp, O. H., and Crewe, A. V. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 8034-8038). The retention of only partial cooperativity by the 200-kDa subunit implies that full cooperativity is dependent on the presence of a complete hexagonal bilayer structure, wherein 12 200-kDa subunits are linked together by approximately 30-kDa heme-deficient chains.  相似文献   
24.
The O-specific polysaccharide chains (O-antigens) of the lipopolysaccharides (LPSs) of Proteus mirabilis O48 and Proteus vulgaris O21 were found to have tetrasaccharide and pentasaccharide repeating units, respectively, interlinked by a glycosidic phosphate. Polysaccharides and an oligosaccharide were derived from the LPSs by various degradation procedures and studied by 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, NOESY, H-detected 1H,13C and 1H,31P HMQC experiments. The following related structures of the repeating units of the O-antigens were established (top: Proteus mirabilis O48; bottom: Proteus vulgaris O21) The O-specific polysaccharide of P. vulgaris O21 has the same structure as that of Hafnia allvei 744 and PCM 1194 [Petersson C., Jachymek, W., Klonowska, A., Lugowski, C., Niedziela, T. & Kenne, L. (1997) Eur. J. Biochem., 245, 668-675], except that the GlcN residue carries the N-acetyl rather than the N-[(R)-3-hydroxybutyryl] group. Serological investigations confirmed the close relatedness of the Proteus and Hafnia O-antigens studied.  相似文献   
25.
The ability to form biofilms is important for environmental survival, transmission, and infectivity of Vibrio cholerae, the causative agent of cholera in humans. To form biofilms, V. cholerae produces an extracellular matrix composed of proteins, nucleic acids and a glycoconjugate, termed Vibrio exopolysaccharide (VPS). Here, we present the data on isolation and characterization of the polysaccharide part of the VPS (VPS-PS), which has the following structure: where α-D-Glc is partially (∼20%) replaced with α-D-GlcNAc. α-GulNAcAGly is an amide between 2-acetamido-2-deoxy-α-guluronic acid and glycine. Apparently, the polysaccharide is bound to a yet unidentified component, which gives it high viscosity and completely suppresses any NMR signals belonging to the sugar chains of the VPS. The only reliable method to remove this component at present is a treatment of the whole glycoconjugate with concentrated hydrochloric acid.  相似文献   
26.
Inherent or therapy-induced drug resistance is a major clinical setback in cancer treatment. The extensive usage of cytotoxic nucleobases and nucleoside analogues in chemotherapy also results in the development of specific mechanisms of drug resistance, such as nucleoside transport or activation deficiencies. These drugs are prodrugs; and being converted into the active mono-, di-, and triphosphates inside cancer cells following administration, they affect nucleic acid synthesis, nucleotide metabolism, or sensitivity to apoptosis. Previously, we actively promoted the idea that the nanodelivery of active nucleotide species, e.g., 5'-triphosphates of nucleoside analogues, can enhance drug efficacy and reduce nonspecific toxicity. In this study, we report the development of a novel type of drug nanoformulations, polymeric conjugates of nucleoside analogues, which are capable of the efficient transport and sustained release of phosphorylated drugs. These drug conjugates have been synthesized, starting from cholesterol-modified mucoadhesive polyvinyl alcohol or biodegradable dextrin, by covalent attachment of nucleoside analogues through a tetraphosphate linker. Association of cholesterol moieties in aqueous media resulted in intramolecular polymer folding and the formation of small nanogel particles containing 0.5 mmol/g of a 5'-phosphorylated nucleoside analogue, e.g., 5-fluoro-2'-deoxyuridine (floxuridine, FdU), an active metabolite of anticancer drug 5-fluorouracyl (5-FU). The polymeric conjugates demonstrated rapid enzymatic release of floxuridine 5'-phosphate and much slower drug release under hydrolytic conditions (pH 1.0-7.4). Among the panel of cancer cell lines, all studied polymeric FdU-conjugates demonstrated an up to 50× increased cytotoxicity in human prostate cancer PC-3, breast cancer MCF-7, and MDA-MB-231 cells, and more than 100× higher efficacy against cytarabine-resistant human T-lymphoma (CEM/araC/8) and gemcitabine-resistant follicular lymphoma (RL7/G) cells as compared to free drugs. In the initial in vivo screening, both PC-3 and RL7/G subcutaneous tumor xenograft models showed enhanced sensitivity to sustained drug release from polymeric FdU-conjugate after peritumoral injections and significant tumor growth inhibition. All these data demonstrate a remarkable clinical potential of novel polymeric conjugates of phosphorylated nucleoside analogues, especially as new therapeutic agents against drug-resistant tumors.  相似文献   
27.
To elucidate possible causes of the elevation of genome number in somatic cells, hepatocyte ploidy levels were measured cytofluorimetrically and related to the organismal parameters (body size, postnatal growth rate, and postnatal development type) in 53 mammalian species. Metabolic scope (ratio of maximal metabolic rate to basal metabolic rate) was also included in 23 species. Body masses ranged 10(5) times, and growth rate more than 30 times. Postnatal growth rate was found to have the strongest effect on the hepatocyte ploidy. At a fixed body mass the growth rate closely correlates (partial correlation analysis) with the cell ploidy level (r = 0.85, P < 10(-6)), whereas at a fixed growth rate body mass correlates poorly with ploidy level (r = -0.38, P < 0.01). The mature young (precocial mammals) of the species have, on average, a higher cell ploidy level than the immature-born (altricial) animals. However, the relationship between precocity of young and cell ploidy levels disappears when the influences of growth rate and body mass are removed. Interspecies variability of the hepatocyte ploidy levels may be explained by different levels of competition between the processes of proliferation and differentiation in cells. In turn, the animal differences in the levels of this competition are due to differences in growth rate. A high negative correlation between the hepatocyte ploidy level and the metabolic scope indicates a low safety margin of organs with a high number of polyploid cells. This fact allows us to challenge a common opinion that increasing ploidy enhances the functional capability of cells or is necessary for cell differentiation. Somatic polyploidy can be considered a "cheap" solution of growth problems that appear when an organ is working at the limit of its capabilities.  相似文献   
28.
F(0).F(1)-ATP synthase in tightly coupled inside-out vesicles derived from Paracoccus denitrificans catalyzes rapid respiration-supported ATP synthesis, whereas their ATPase activity is very low. In the present study, the conditions required to reveal the Deltamu(H+)-generating ATP hydrolase activity of the bacterial enzyme have been elucidated. Energization of the membranes by respiration results in strong activation of the venturicidin-sensitive ATP hydrolysis, which is coupled with generation of Deltam?(H+). Partial uncoupling stimulates the proton-translocating ATP hydrolysis, whereas complete uncoupling results in inhibition of the ATPase activity. The presence of inorganic phosphate is indispensable for the steady-state turnover of the Deltam?(H+)-activated ATPase. The collapse of Deltam?(H+) brings about rapid deactivation of the enzyme, which has been subjected to pre-energization. The rate and extent of the deactivation depend on protein concentration, i.e. the more vesicles are present in the assay mixture, the higher the rate and extent of the deactivation is seen. Sulfite and the ADP-trapping system protect ATPase against the Deltam?(H+) collapse-induced deactivation, whereas phosphate delays the rate of deactivation. A low concentration of ADP (<1 microm) increases the rate of deactivation. Taken together, the results suggest that latent proton-translocating ATPase in P. denitrificans is kinetically equivalent to the previously characterized ADP(Mg2+)-inhibited, azide-trapped bovine heart mitochondrial F(0).F(1)-ATPase (Galkin, M. A., and Vinogradov, A. D. (1999) FEBS Lett. 448, 123-126). A Deltam?(H+)-sensitive mechanism operates in P. denitrificans that prevents physiologically wasteful consumption of ATP by F(0).F(1)-ATPase (synthase) complex when the latter is unable to maintain certain value of Deltam?(H+).  相似文献   
29.
The LPS from Shewanella oneidensis strain MR-1 was analysed by chemical methods and by NMR spectroscopy and mass spectrometry. The LPS contained no polysaccharide O-chain, and its carbohydrate backbone had the following structure: (1S)-GalNAco-(1-->4,6)-alpha-Gal-(1-->6)-alpha-Gal-(1-->3)-alpha-Gal-(1-P-3)-alpha-DDHep-(1-->5)-alpha-8-aminoKdo4R-(2-->6)-beta-GlcN4P-(1-->6)-alpha-GlcN1P, where R is P or EtNPP. There are several novel aspects to this LPS. It contains a novel linking unit between the core polysaccharide and lipid A moieties, namely 8-amino-3,8-dideoxy-D-manno-octulosonic acid (8-aminoKdo) and a residue of 2-acetamido-2-deoxy-D-galactose (N-acetylgalactosamine, GalNAco) in an open-chain form, linked as cyclic acetal to O-4 and O-6 of D-galactopyranose. The structure contains a phosphodiester linkage between the alpha-D-galactopyranose and D-glycero-D-manno-heptose (DDHep) residues.  相似文献   
30.
The rate of mitochondrial ATPase inactivation by the naturally occurring inhibitor protein in the presence of saturating ATP and Mg2+ at pH 8.0 depends hyperbolically on the amount of inhibitor added; the upper limit of an apparent first-order constant for the inactivation process is 1.0(-1) at 25 degrees C. A dramatic difference in the inactivation rate is observed when the protein inhibitor is added to the same assay system from either acidic (pH 4.8) or alkaline (pH 8.2) solutions. The slow reversible transition of the inhibitor from its rapidly reacting 'acidic' form to the slow reacting 'alkaline' form occurs when the solution of the protein inhibitor is subjected to a pH-jump from 4.8 to 8.2 (t1/2 approximately 30s at 25 degrees C). The pH-profile of the inhibitor active/inactive equilibrium suggests that a group with pKa approximately 6.5 is involved in the transition. Treatment of the inhibitor protein with a histidine-specific reagent (e.g. diethyl pyrocarbonate) abolishes its inactivating effect on the ATPase activity. It is concluded that the protonation/deprotonation of the inhibitor protein followed by its slow conformational changes is the rate-limiting step in the inhibitor-ATP synthetase interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号