首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1412篇
  免费   93篇
  国内免费   1篇
  2023年   18篇
  2022年   18篇
  2021年   33篇
  2020年   31篇
  2019年   28篇
  2018年   48篇
  2017年   49篇
  2016年   56篇
  2015年   69篇
  2014年   77篇
  2013年   105篇
  2012年   125篇
  2011年   112篇
  2010年   76篇
  2009年   67篇
  2008年   87篇
  2007年   86篇
  2006年   72篇
  2005年   51篇
  2004年   56篇
  2003年   53篇
  2002年   49篇
  2001年   7篇
  2000年   9篇
  1999年   6篇
  1996年   4篇
  1994年   4篇
  1993年   4篇
  1992年   9篇
  1991年   8篇
  1990年   4篇
  1989年   9篇
  1988年   6篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   8篇
  1983年   5篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   7篇
  1973年   6篇
  1972年   2篇
  1971年   3篇
  1966年   2篇
排序方式: 共有1506条查询结果,搜索用时 31 毫秒
101.
Journal of Biological Physics - Protein–protein interaction in solution strongly depends on dissolved ions and solution pH. Interaction among globular protein (bovine serum albumin, BSA),...  相似文献   
102.
103.
Salinity tolerance in rice is highly desirable to sustain production in areas rendered saline due to various reasons. It is a complex quantitative trait having different components, which can be dissected effectively by genome-wide association study (GWAS). Here, we implemented GWAS to identify loci controlling salinity tolerance in rice. A custom-designed array based on 6,000 single nucleotide polymorphisms (SNPs) in as many stress-responsive genes, distributed at an average physical interval of <100 kb on 12 rice chromosomes, was used to genotype 220 rice accessions using Infinium high-throughput assay. Genetic association was analysed with 12 different traits recorded on these accessions under field conditions at reproductive stage. We identified 20 SNPs (loci) significantly associated with Na+/K+ ratio, and 44 SNPs with other traits observed under stress condition. The loci identified for various salinity indices through GWAS explained 5–18% of the phenotypic variance. The region harbouring Saltol, a major quantitative trait loci (QTLs) on chromosome 1 in rice, which is known to control salinity tolerance at seedling stage, was detected as a major association with Na+/K+ ratio measured at reproductive stage in our study. In addition to Saltol, we also found GWAS peaks representing new QTLs on chromosomes 4, 6 and 7. The current association mapping panel contained mostly indica accessions that can serve as source of novel salt tolerance genes and alleles. The gene-based SNP array used in this study was found cost-effective and efficient in unveiling genomic regions/candidate genes regulating salinity stress tolerance in rice.  相似文献   
104.
A rapid high-resolution genome-wide strategy for molecular mapping of major QTL(s)/gene(s) regulating important agronomic traits is vital for in-depth dissection of complex quantitative traits and genetic enhancement in chickpea. The present study for the first time employed a NGS-based whole-genome QTL-seq strategy to identify one major genomic region harbouring a robust 100-seed weight QTL using an intra-specific 221 chickpea mapping population (desi cv. ICC 7184 × desi cv. ICC 15061). The QTL-seq-derived major SW QTL (CaqSW1.1) was further validated by single-nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker-based traditional QTL mapping (47.6% R2 at higher LOD >19). This reflects the reliability and efficacy of QTL-seq as a strategy for rapid genome-wide scanning and fine mapping of major trait regulatory QTLs in chickpea. The use of QTL-seq and classical QTL mapping in combination narrowed down the 1.37 Mb (comprising 177 genes) major SW QTL (CaqSW1.1) region into a 35 kb genomic interval on desi chickpea chromosome 1 containing six genes. One coding SNP (G/A)-carrying constitutive photomorphogenic9 (COP9) signalosome complex subunit 8 (CSN8) gene of these exhibited seed-specific expression, including pronounced differential up-/down-regulation in low and high seed weight mapping parents and homozygous individuals during seed development. The coding SNP mined in this potential seed weight-governing candidate CSN8 gene was found to be present exclusively in all cultivated species/genotypes, but not in any wild species/genotypes of primary, secondary and tertiary gene pools. This indicates the effect of strong artificial and/or natural selection pressure on target SW locus during chickpea domestication. The proposed QTL-seq-driven integrated genome-wide strategy has potential to delineate major candidate gene(s) harbouring a robust trait regulatory QTL rapidly with optimal use of resources. This will further assist us to extrapolate the molecular mechanism underlying complex quantitative traits at a genome-wide scale leading to fast-paced marker-assisted genetic improvement in diverse crop plants, including chickpea.  相似文献   
105.
106.
The genome of the cold-adapted bacterium Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct monomeric hemoglobins exhibiting a 2/2 ??-helical fold. In the present work, one of these hemoglobins is studied by resonance Raman, electronic absorption and electronic paramagnetic resonance spectroscopies, kinetic measurements, and different bioinformatic approaches. It is the first cold-adapted bacterial hemoglobin to be characterized. The results indicate that this protein belongs to the 2/2 hemoglobin family, Group II, characterized by the presence of a tryptophanyl residue on the bottom of the heme distal pocket in position G8 and two tyrosyl residues (TyrCD1 and TyrB10). However, unlike other bacterial hemoglobins, the ferric state, in addition to the aquo hexacoordinated high-spin form, shows multiple hexacoordinated low-spin forms, where either TyrCD1 or TyrB10 can likely coordinate the iron. This is the first example in which both TyrCD1 and TyrB10 are proposed to be the residues that are alternatively involved in heme hexacoordination by endogenous ligands.  相似文献   
107.
The present study deals with cultivation of 2,4,6-trichlorophenol (TCP) degrading aerobic granules in two SBR systems based on glucose and acetate as co-substrate. Biodegradation of TCP containing wastewater starting from 10 to 360 mg L−1 with more than 90% efficiency was achieved. Sludge volume index decreases as the operation proceeds to stabilize at 35 and 30 mL g−1 while MLVSS increases from 4 to 6.5 and 6.2 g L−1 for R1 (with glucose as co-substrate) and R2 (with sodium acetate as co-substrate), respectively. FTIR, GC and GC/MS spectral studies shows that the biodegradation occurred via chlorocatechol pathway and the cleavage may be at ortho-position. Haldane model for inhibitory substrate was applied to the system and it was observed that glucose fed granules have a high specific degradation rate and efficiency than acetate fed granules. Genotoxicity studies shows that effluent coming from SBRs was non-toxic.  相似文献   
108.
109.

Background

The synthesis of bioactive nanoparticles with precise molecular level control is a major challenge in bionanotechnology. Understanding the nature of the interactions between the active components and transport biomaterials is thus essential for the rational formulation of bio-nanocarriers. The current study presents a single molecule of bovine serum albumin (BSA), lysozyme (Lys), or myoglobin (Mb) used to load hydrophobic drugs such as quercetin (Q) and other flavonoids.

Results

Induced by dimethyl sulfoxide (DMSO), BSA, Lys, and Mb formed spherical nanocarriers with sizes less than 70 nm. After loading Q, the size was further reduced by 30%. The adsorption of Q on protein is mainly hydrophobic, and is related to the synergy of Trp residues with the molecular environment of the proteins. Seven Q molecules could be entrapped by one Lys molecule, 9 by one Mb, and 11 by one BSA. The controlled releasing measurements indicate that these bioactive nanoparticles have long-term antioxidant protection effects on the activity of Q in both acidic and neutral conditions. The antioxidant activity evaluation indicates that the activity of Q is not hindered by the formation of protein nanoparticles. Other flavonoids, such as kaempferol and rutin, were also investigated.

Conclusions

BSA exhibits the most remarkable abilities of loading, controlled release, and antioxidant protection of active drugs, indicating that such type of bionanoparticles is very promising in the field of bionanotechnology.  相似文献   
110.
In 2003, the FIP Dissolution Working group published a position paper on dissolution/drug release testing for special/novel dosage forms that represented the scientific opinions of many experts in the field at that time (1). The position paper has supported activities, programs, and decisions in the scientific, technical, and regulatory community. Due to the rapid evolution of new practices and techniques for in vitro testing, the FIP Special Interest Group (SIG) on Dissolution/Drug Release decided to revise the previous paper and added proposals for further harmonization of in vitro release testing practices for different pharmaceutical dosage forms. This article represents the current updates to the previously published paper. This revision has been aligned to coincide with the USP taxonomy including route of administration, intended site of drug release, and dosage form. The revised paper includes information from current literature, expert discussions, and presentations from recent workshops (2,3). The authors acknowledge and expect further updates to be made as additional progress is made in the relevant areas. Thus, comments and additional contributions are welcome and may be considered for the next revision of the position paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号