首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   889篇
  免费   36篇
  2024年   1篇
  2023年   10篇
  2022年   10篇
  2021年   17篇
  2020年   21篇
  2019年   20篇
  2018年   29篇
  2017年   23篇
  2016年   31篇
  2015年   42篇
  2014年   53篇
  2013年   64篇
  2012年   81篇
  2011年   61篇
  2010年   46篇
  2009年   44篇
  2008年   56篇
  2007年   51篇
  2006年   40篇
  2005年   32篇
  2004年   40篇
  2003年   33篇
  2002年   34篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1996年   4篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   6篇
  1988年   6篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1974年   4篇
  1973年   5篇
  1968年   1篇
  1966年   2篇
  1959年   1篇
排序方式: 共有925条查询结果,搜索用时 35 毫秒
71.
In 2003, the FIP Dissolution Working group published a position paper on dissolution/drug release testing for special/novel dosage forms that represented the scientific opinions of many experts in the field at that time (1). The position paper has supported activities, programs, and decisions in the scientific, technical, and regulatory community. Due to the rapid evolution of new practices and techniques for in vitro testing, the FIP Special Interest Group (SIG) on Dissolution/Drug Release decided to revise the previous paper and added proposals for further harmonization of in vitro release testing practices for different pharmaceutical dosage forms. This article represents the current updates to the previously published paper. This revision has been aligned to coincide with the USP taxonomy including route of administration, intended site of drug release, and dosage form. The revised paper includes information from current literature, expert discussions, and presentations from recent workshops (2,3). The authors acknowledge and expect further updates to be made as additional progress is made in the relevant areas. Thus, comments and additional contributions are welcome and may be considered for the next revision of the position paper.  相似文献   
72.
Imatinib mesylate targets mutated KIT oncoproteins in gastrointestinal stromal tumor (GIST) and produces a clinical response in 80% of patients. The mechanism is believed to depend predominantly on the inhibition of KIT-driven signals for tumor-cell survival and proliferation. Using a mouse model of spontaneous GIST, we found that the immune system contributes substantially to the antitumor effects of imatinib. Imatinib therapy activated CD8(+) T cells and induced regulatory T cell (T(reg) cell) apoptosis within the tumor by reducing tumor-cell expression of the immunosuppressive enzyme indoleamine 2,3-dioxygenase (Ido). Concurrent immunotherapy augmented the efficacy of imatinib in mouse GIST. In freshly obtained human GIST specimens, the T cell profile correlated with imatinib sensitivity and IDO expression. Thus, T cells are crucial to the antitumor effects of imatinib in GIST, and concomitant immunotherapy may further improve outcomes in human cancers treated with targeted agents.  相似文献   
73.
Amaranthus spinosus Linn. (Amaranthaceae), commonly known as “Mulluharivesoppu” in Kannada, is used in the Indian traditional system of medicine for the treatment of diabetes. The present study deals with the scientific evaluation of alpha amylase and the antioxidant potential of methanol extract of A. spinosus (MEAS). The aim of this study was to investigate in vitro alpha-amylase enzyme inhibition by CNPG3 (2-chloro-4-nitrophenol α-d-maltotrioside) and in vivo antioxidant potential of malondialdehyde (MDA), glutathione (GSH), catalase (CAT) and total thiols (TT) in alloxan-induced diabetic rats of a methanolic extract of A. spinosus. Blood sugar was also determined in MEAS-treated alloxan-induced diabetic rats. MEAS showed significant inhibition of alpha-amylase activity and IC50 46.02 μg/ml. Oral administration of MEAS (200 and 400 mg/kg) for 15 days showed significant reduction in the elevated blood glucose, MDA and restores GSH, CAT and TT levels as compared with a diabetic control. The present study provides evidence that the methanolic extract of A. spinosus has potent alpha amylase, anti-diabetic and antioxidant activities.  相似文献   
74.
The study was undertaken to investigate the effect of zinc (Zn) on glutathione S-transferase (GST) and superoxide dismutases (SOD) activities and on the expressions of cytosolic Cu, Zn-SOD (SOD1), mitochondrial Mn-SOD (SOD2), γ-glutamyl cysteine synthetase (γ-GCS) and heme oxygenase-1 (HO-1) in the nigrostriatal tissue of rats. Additionally, Zn-induced alterations in the neurobehavioral parameters, lipid peroxidation (LPO), striatal dopamine and its metabolites and tyrosine hydroxylase (TH) protein expression were measured to assess their correlations with the oxidative stress. Zn exposure reduced the locomotor activity, rotarod performance, striatal dopamine and its metabolites and TH protein expression. LPO, total SOD, SOD1 and SOD2 activities were increased while GST and catalase were reduced in a dose and time dependent manner. Expressions of SOD1 and HO-1 were increased while no change was observed in SOD2 and γ-GCS expressions. The results obtained suggest that Zn-induced augmentation of total SOD, SOD1, SOD2 and HO-1 was associated with increased oxidative stress and neurodegenerative indexes indicating the involvement of both cytosolic and mitochondrial machinery in Zn-induced oxidative stress leading to dopaminergic neurodegeneration.  相似文献   
75.
Visfatin has been proposed as an insulin-mimicking adipocytokine, predominantly secreted from adipose tissue and correlated with obesity. However, recent studies suggest visfatin may act as a proinflammatory cytokine. Our studies sought to determine the significance of this adipocytokine and its potential role in the pathogenesis of T2DM. Firstly, we examined the effects of diabetic status on circulating visfatin levels, and several other adipocytokines, demonstrating that diabetic status increased visfatin*, TNF-α*** and IL-6*** compared with non-diabetic subjects (*p<0.05, **p<0.01, ***p<0.001, respectively). We then assessed the effects of an insulin sensitizer, rosiglitazone (RSG), in treatment naïve T2DM subjects, on circulating visfatin levels. Our findings showed that visfatin was reduced post-RSG treatment [vs. pre-treatment (*p<0.05)] accompanied by a reduction in HOMA-IR**, thus implicating a role for insulin in visfatin regulation. Further studies addressed the intracellular mechanisms by which visfatin may be regulated, and may exert pro-inflammatory effects, in human abdominal subcutaneous (Abd Sc) adipocytes. Following insulin (Ins) and RSG treatment, our in vitro findings highlighted that insulin (100 nM), alone, upregulated visfatin protein expression whereas, in combination with RSG (10 nM), it reduced visfatin*, IKKβ** and p-JNK1/2*. Furthermore, inhibition of JNK protein exacted a significant reduction in visfatin expression (**p<0.01), whilst NF-κB blockade increased visfatin (*p<0.05), thus identifying JNK as the more influential factor in visfatin regulation. Additional in vitro analysis on adipokines regulating visfatin showed that only Abd Sc adipocytes treated with recombinant human (rh)IL-6 increased visfatin protein (*p<0.05), whilst rh visfatin treatment, itself, had no influence on TNF-α, IL-6 or resistin secretion from Sc adipocytes. These data highlight visfatin''s regulation by insulin and RSG, potentially acting through NF-κB and JNK mechanisms, with only rh IL-6 modestly affecting visfatin regulation. Taken together, these findings suggest that visfatin may represent a pro-inflammatory cytokine that is influenced by insulin/insulin sensitivity via the NF-κB and JNK pathways.  相似文献   
76.
An attempt was made to evaluate the whole body -radiation effect on tumor in the presence of free and liposome encapsulated AK-2123, a hypoxic cell radiosensitizer that has widely been used in combination with a number of cancer therapies such as thermotherapy, chemotherapy and radiotherapy. Entrapment efficiency of AK-2123 into liposome was determined by LASER Raman spectroscopy. Cancer induction in mice was carried out by repeated exposure of N-nitrosodiethylamine (DEN) in combination with partial hepatectomy. Parameters such as marker enzymes activities (GGT and AChE), rates of nucleic acid synthesis, viability modification factor and the histology of liver tissues monitored, supported the induction of cancer in liver. In addition, the effect of free as well as liposome encapsulated AK-2123 on haemopoietic parameters were also studied. It was observed that AK-2123 after incorporation into liposome afforded more efficient radiomodulatory effects than that of free AK-2123 as determined by the above-mentioned parameters. Neither free AK-2123 nor liposome encapsulated AK-2123 showed any detectable toxic effects on the mice. Thus, it is seen that treatment of cancer with a combination of radiation, a radiomodifier and a drug delivery system, opens a wide scope for exploitation for the improvement of existing cancer therapies. (Mol Cell Biochem 271: 139–150, 2005)  相似文献   
77.
A large number of biochemical and genetic studies have demonstrated the involvement of DNA polymerase beta (Pol beta) in mammalian base excision repair (BER). Pol beta participates in BER sub-pathways by contributing gap filling DNA synthesis and lyase removal of the 5'-deoxyribose phosphate (dRP) group from the cleaved abasic site. To better understand the mechanism of the dRP lyase reaction at an atomic level, we determined a crystal structure of Pol beta complexed with 5'-phosphorylated abasic sugar analogs in nicked DNA. This DNA ligand represents a potential BER intermediate. The crystal structure reveals that the dRP group is bound in a non-catalytic binding site. The catalytic nucleophile in the dRP lyase reaction, Lys72, and all other potential secondary nucleophiles, are too far away to participate in nucleophilic attack on the C1' of the sugar. An approximate model of the dRP group in the expected catalytic binding site suggests that a rotation of 120 degrees about the dRP 3'-phosphate is required to position the epsilon-amino Lys72 close to the dRP C1'. This model also suggests that several other side chains are in position to facilitate the beta-elimination reaction. From results of mutational analysis of key residues in the dRP lyase active site, it appears that the substrate dRP can be stabilized in the observed non-catalytic binding conformation, hindering dRP lyase activity.  相似文献   
78.
The guanidinium chloride- and urea-induced unfolding of FprA, a mycobacterium NADPH-ferredoxin reductase, was examined in detail using multiple spectroscopic techniques, enzyme activity measurements and size exclusion chromatography. The equilibrium unfolding of FprA by urea is a cooperative process where no stabilization of any partially folded intermediate of protein is observed. In comparison, the unfolding of FprA by guanidinium chloride proceeds through intermediates that are stabilized by interaction of protein with guanidinium chloride. In the presence of low concentrations of guanidinium chloride the protein undergoes compaction of the native conformation; this is due to optimization of charge in the native protein caused by electrostatic shielding by the guanidinium cation of charges on the polar groups located on the protein side chains. At a guanidinium chloride concentration of about 0.8 m, stabilization of apo-protein was observed. The stabilization of apo-FprA by guanidinium chloride is probably the result of direct binding of the Gdm+ cation to protein. The results presented here suggest that the difference between the urea- and guanidinium chloride-induced unfolding of FprA could be due to electrostatic interactions stabilizating the native conformation of this protein.  相似文献   
79.
Integrin beta(3) is polymorphic at residue 33 (Leu(33) or Pro(33)), and the Pro(33)-positive platelets display enhanced aggregation, P-selectin secretion, and shorter bleeding times. Because outside-in signaling is critical for platelet function, we hypothesized that the Pro(33) variant provides a more efficient signaling than the Leu(33) isoform. When compared with Pro(33)-negative platelets, Pro(33)-positive platelets demonstrated significantly greater serine/threonine phosphorylation of extracellular signal-regulated kinase (ERK2) and myosin light chain (MLC) but not cytoplasmic phospholipase A2 upon thrombin-induced aggregation. Tyrosine phosphorylation of integrin beta(3) and the adaptor protein Shc was no different in the fibrinogen-engaged platelets from both genotypes. The addition of Integrilin (alpha(IIb)beta(3)-fibrinogen blocker) or okadaic acid (serine/threonine phosphatase inhibitor) dramatically enhanced ERK2 and MLC phosphorylation in the Pro(33)-negative platelets when compared with Pro(33)-positive platelets, suggesting that integrin engagement during platelet aggregation activates serine/threonine phosphatases. The phosphatase activity of myosin phosphatase (MP) that dephosphorylates MLC is inactivated by phosphorylation of the myosin binding subunit of MP at Thr(696), and aggregating Pro(33)-positive platelets exhibited an increased Thr(696) phosphorylation of MP. These studies highlight a role for the dephosphorylation events via the serine/threonine phosphatases during the integrin outside-in signaling mechanism, and the Leu(33) --> Pro polymorphism regulates this process. Furthermore, these findings support a mechanism whereby the reported enhanced alpha granule secretion in the Pro(33)-positive platelets could be mediated by an increased phosphorylation of MLC, which in turn is caused by an increased phosphorylation and subsequent inactivation of myosin phosphatase.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号