首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   7篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   6篇
  2014年   6篇
  2013年   9篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2003年   4篇
  2002年   7篇
  2001年   10篇
  2000年   6篇
  1999年   7篇
  1998年   3篇
  1997年   7篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1977年   3篇
  1972年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有141条查询结果,搜索用时 31 毫秒
51.
52.
53.
54.

Background  

Glutathione, the main antioxidant of intestinal epithelial cells, is suggested to play an important role in gut barrier function and prevention of inflammation-related oxidative damage as induced by acute bacterial infection. Most studies on intestinal glutathione focus on oxidative stress reduction without considering functional disease outcome. Our aim was to determine whether depletion or maintenance of intestinal glutathione changes susceptibility of rats to Salmonella infection and associated inflammation.  相似文献   
55.
56.
Riley EM  Viney ME 《Molecular ecology》2011,20(23):4827-4829
The immune system has evolved, and continues to evolve, in response to the selection pressure that infections exert on animals in their natural environments, yet much of our understanding about how the immune system functions comes from studies of model species maintained in the almost complete absence of such environmental selection. The scientific discipline of immunology has among its aims the improvement of human and animal health by the application of immunological knowledge. As research on humans and domesticated animals is highly constrained-ethically, logistically and financially-experimental animal models have become an invaluable tool for dissecting the functioning of the immune system. The house mouse (Mus musculus) is by far the most widely used animal model in immunological research but laboratory-reared mice provide a very narrow view of the immune system-that of a well-fed and comfortably housed animal with minimal exposure to microbial pathogens. Indeed, so much of our immunological knowledge comes from studies of a very few highly inbred mouse strains that-to all intents and purposes-our immunological knowledge is based on enormously detailed studies of very small numbers of individual mice. The limitations of studies in inbred strains of laboratory mice are well-recognized (Pedersen & Babayan 2011), but serious attempts to address these limitations have been few and far between. However, the emerging field of 'ecological immunology' where free-living populations are studied in their natural habitat is beginning to redress this imbalance (Viney et al. 2005; Martin et al. 2006; Owen et al. 2010; Abolins et al. 2011). As demonstrated in the work by Boysen et al. (2011) in this issue of Molecular Ecology, studies in wild animal populations-especially free-living M. musculus-represent a valuable bridge between studies in humans and livestock and studies of captive animals.  相似文献   
57.
The British Society for Parasitology Autumn Symposium was held on 14 September 2001 at the Linnean Society of London, UK, only a few yards from the room in which Darwin and Wallace presented their joint papers on organic variation. Fittingly, the symposium--Parasite variation: immunological and ecological significance--considered the consequences of parasite variation.  相似文献   
58.
59.
Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information (“Quadratic Mutual Information”). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the ''visual memory'' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells’ response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types.  相似文献   
60.
RNA interference (RNAi) has been used extensively in model organisms such as Caenorhabditis elegans. Methods developed for RNAi in C. elegans have also been used in parasitic nematodes. However, RNAi in parasitic nematodes has been unsuccessful or has had limited success. Studies of genes essential for RNAi in C. elegans and of RNAi in Caenorhabditis spp. other than C. elegans suggest two complementary, and testable, hypotheses for the limited success of RNAi in animal parasitic nematodes. These are: (i) that the external supply of double stranded RNA (dsRNA) to parasitic nematodes is inappropriate to achieve RNAi and (ii) that parasitic nematodes are functionally defective in genes required to initiate RNAi from externally supplied dsRNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号