首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   788篇
  免费   60篇
  2023年   4篇
  2022年   11篇
  2021年   18篇
  2020年   12篇
  2019年   14篇
  2018年   24篇
  2017年   14篇
  2016年   19篇
  2015年   47篇
  2014年   37篇
  2013年   61篇
  2012年   62篇
  2011年   56篇
  2010年   38篇
  2009年   32篇
  2008年   32篇
  2007年   41篇
  2006年   35篇
  2005年   33篇
  2004年   29篇
  2003年   27篇
  2002年   32篇
  2001年   12篇
  2000年   11篇
  1999年   3篇
  1998年   6篇
  1997年   6篇
  1996年   14篇
  1995年   9篇
  1994年   8篇
  1993年   8篇
  1992年   11篇
  1991年   13篇
  1990年   3篇
  1989年   7篇
  1988年   8篇
  1987年   4篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   5篇
  1980年   2篇
  1976年   2篇
  1974年   2篇
  1973年   3篇
  1972年   4篇
  1967年   2篇
  1964年   2篇
  1963年   1篇
排序方式: 共有848条查询结果,搜索用时 46 毫秒
781.
The first crystallographic structure of an N-hydroxyurea inhibitor bound into the active site of a matrix metalloproteinase is reported. The ligand and three other analogues were prepared and studied as inhibitors of MMP-2, MMP-3, and MMP-8. The crystal structure of the complex with MMP-8 shows that the N-hydroxyurea, contrary to the analogous hydroxamate, binds the catalytic zinc ion in a monodentate rather than bidentate mode and with high out-of-plane distortion of the amide bonds.  相似文献   
782.
Bradykinin (BK) is involved in a wide variety of pathophysiological processes. Potent BK peptide antagonists can be developed introducing constrained unnatural amino acids, necessary to force the secondary structure of the molecule. In this paper, we report a structure-activity relationship study of two peptide analogues of the potent B2 antagonist HOE 140 by replacing the D-Tic-Oic dipeptide with conformationally constrained dipeptide mimetic beta-turn inducers.  相似文献   
783.
The land snail genus Solatopupa consists of six species and has a peri-Tyrrhenian distribution; most of the species have a very narrow range and all of them except one (Solatopupa cianensis, which inhabits porphyritic rocks) are strictly bound to calcareous substrates. One species (Solatopupa guidoni) is limited to Sardinia, Corsica, and Elba Island. Because the potential for dispersal of these snails is low, the insular range of this species has been traditionally related to the Oligocenic detachment of the Sardinia-Corsica microplate from the Iberian plate and its subsequent rotation towards the Italian peninsula. In this study, we used sequences of three mitochondrial and one nuclear gene to reconstruct the evolutionary history of the genus. Our phylogenetic results are consistent with the genetic relationships found using allozymes, but contrast with the phylogenetic hypotheses based on karyology and morphology. Molecular clock estimates indicate that the main cladogenetic events in the genus occurred between the middle Miocene and the middle-late Pliocene. Patterns of phylogenetic relationships and geological considerations suggest that the cladogenesis of the genus can be explained by vicariant (tectonic) processes. Our datings do not support a causal relation between the split of S. guidoni from its continental sister taxon and the initial phases of the detachment of the Corsica-Sardinia microplate from the mainland. On the contrary, time estimates coincide with the very last phase of detachment of the microplate (from 5 to 3 Myrs ago). Overall, our molecular clock estimates are in good agreement with the latest geological views on the tectonic evolution of the peri-Tyrrhenian area.  相似文献   
784.
Conflicting hypotheses in phylogenetics and systematics, generated by different data sets (e.g. morphological versus molecular), are common in biology. The clarification of such instances may allow understanding general mechanisms involved in the speciation process in an evolutionary light. Here, we present and discuss the case of the Dolichopus plumipes species group in the long‐legged flies, Dolichopodidae. A phylogenetic survey was performed based on both morphological and molecular data. The full data set comprises 31 morphological characters and 2252 molecular characters (mitochondrial – COI: 810; 12S: 343; 16S: 514; nuclear – ITS2: 585) of 49 different species, represented by 82 specimens. The molecular phylogenetic analysis revealed a clade (composed by the species D. plumipes, Dolichopus wahlbergi, Dolichopus polleti, Dolichopus simplex, and Dolichopus nigricornis) that disagrees with the traditional morphological view based on external characters. In particular, specimens of the species D. plumipes and D. simplex were indistinguishable with the molecular markers used here. Yet, we still consider D. plumipes and D. simplex as two distinct taxa and provide explanatory hypotheses on the evolutionary background. The conspicuous male secondary sexual characters (present in plumipes but not in simplex) are key factors in sexual selection and their presumably rapid reduction in D. simplex is thought to be of main importance for the explanation of the speciation process. The plumipessimplex case may therefore be viewed as a paradigmatic illustration showing that a better integration of the molecular and morphological approaches is needed to understand and clarify the, in some cases, complex systematics and phylogeny of organisms.  相似文献   
785.
There is increasing evidence indicating that nutritional genomics represents a promise to improve public health. This goal will be reached by highlighting the mechanisms through which diet can reduce the risk of monogenic and common polygenic diseases. Indeed, nutrition is a very relevant environmental factor involved in the development and progression of metabolic disorders, as well as other kind of diseases. The revolutionary changes in the field of genomics have led to the development and implementation of new technologies and molecular tools. These technologies have a useful application in the nutritional sciences, since they allow a more precise and accurate analysis of biochemical alterations, in addition to filling fundamental gaps in the knowledge of nutrient–genome interactions in both health and disease. Overall, these advances will open undiscovered ways in genome-customized diets for disease prevention and therapy. This review summarizes the recent knowledge concerning this novel nutritional approach, paying attention to the human genome variations, such as single-nucleotide polymorphisms and copy number variations, gene expression and innovative molecular tools to reveal them.  相似文献   
786.
Mutations in the ATP6 gene of mtDNA (mitochondrial DNA) have been shown to cause several different neurological disorders. The product of this gene is ATPase 6, an essential component of the F1F0-ATPase. In the present study we show that the function of the F1F0-ATPase is impaired in lymphocytes from ten individuals harbouring the mtDNA T8993G point mutation associated with NARP (neuropathy, ataxia and retinitis pigmentosa) and Leigh syndrome. We show that the impaired function of both the ATP synthase and the proton transport activity of the enzyme correlates with the amount of the mtDNA that is mutated, ranging from 13-94%. The fluorescent dye RH-123 (Rhodamine-123) was used as a probe to determine whether or not passive proton flux (i.e. from the intermembrane space to the matrix) is affected by the mutation. Under state 3 respiratory conditions, a slight difference in RH-123 fluorescence quenching kinetics was observed between mutant and control mitochondria that suggests a marginally lower F0 proton flux capacity in cells from patients. Moreover, independent of the cellular mutant load the specific inhibitor oligomycin induced a marked enhancement of the RH-123 quenching rate, which is associated with a block in proton conductivity through F0 [Linnett and Beechey (1979) Inhibitors of the ATP synthethase system. Methods Enzymol. 55, 472-518]. Overall, the results rule out the previously proposed proton block as the basis of the pathogenicity of the mtDNA T8993G mutation. Since the ATP synthesis rate was decreased by 70% in NARP patients compared with controls, we suggest that the T8993G mutation affects the coupling between proton translocation through F0 and ATP synthesis on F1. We discuss our findings in view of the current knowledge regarding the rotary mechanism of catalysis of the enzyme.  相似文献   
787.
Thirty samples of Italian durum wheat semolina and whole durum wheat semolina, generally used for the production of Southern Italy's traditional breads, were subjected to microbiological analysis in order to explore their lactic acid bacteria (LAB) diversity and to find strains with antifungal activity. A total of 125 presumptive LAB isolates (Gram-positive and catalase-negative) were characterized by repetitive extragenic palindromic-PCR (REP-PCR) and sequence analysis of the 16S rRNA gene, leading to the identification of the following species: Weissella confusa, Weissella cibaria, Leuconostoc citreum, Leuconostoc mesenteroides, Lactococcus lactis, Lactobacillus rossiae and Lactobacillus plantarum. The REP-PCR results delineated 17 different patterns whose cluster analysis clearly differentiated W. cibaria from W. confusa isolates. Seventeen strains, each characterized by a different REP-PCR pattern, were screened for their antifungal properties. They were grown in a flour-based medium, comparable to a real food system, and the resulting fermentation products (FPs) were tested against fungal species generally contaminating bakery products, Aspergillus niger, Penicillium roqueforti and Endomyces fibuliger. The results of the study indicated a strong inhibitory activity – comparable to that obtained with the common preservative calcium propionate (0.3% w/v) – of ten LAB strains against the most widespread contaminant of bakery products, P. roqueforti. The screening also highlighted the unexplored antifungal activity of L. citreum, L. rossiae and W. cibaria (1 strain), which inhibited all fungal strains to the same or a higher extent compared with calcium propionate. The fermentation products of these three strains were characterized by low pH values, and a high content of lactic and acetic acids.  相似文献   
788.
Changes in the skeletal muscle protein mass frequently occur in both physiological and pathological states. Muscle hypotrophy, in particular, is commonly observed during aging and is characteristic of several pathological conditions such as neurological diseases, cancer, diabetes, and sepsis. The skeletal muscle protein content depends on the relative rates of synthesis and degradation, which must be coordinately regulated to maintain the equilibrium. Pathological muscle depletion is characterized by a negative nitrogen balance, which results from disruption of this equilibrium due to reduced synthesis, increased breakdown, or both. The current view, mainly based on experimental data, considers hypercatabolism as the major cause of muscle protein depletion. Several signaling pathways that probably contribute to muscle atrophy have been identified, and there is increasing evidence that oxidative stress, due to reactive oxygen species production overwhelming the intracellular antioxidant systems, plays a role in causing muscle depletion both during aging and in chronic pathological states. In particular, oxidative stress has been proposed to enhance protein breakdown, directly or by interacting with other factors. This review focuses on the possibility of using antioxidant treatments to target molecular pathways involved in the pathogenesis of skeletal muscle wasting.  相似文献   
789.
The biological methyl donor S-adenosyl-l-methionine (AdoMet) is spontaneously degraded by inversion of its sulfonium center to form the R,S diastereomer. Unlike its precursor, (S,S)-AdoMet, (R,S)-AdoMet has no known cellular function and may have some toxicity. Although the rate of (R,S)-AdoMet formation under physiological conditions is significant, it has not been detected at substantial levels in vivo in a wide range of organisms. These observations imply that there are mechanisms that either dispose of (R,S)-AdoMet or convert it back to (S,S)-AdoMet. Previously, we identified two homocysteine methyltransferases (Mht1 and Sam4) in yeast capable of recognizing and metabolizing (R,S)-AdoMet. We found similar activities in worms, plants, and flies. However, it was not established whether these activities could prevent R,S accumulation. In this work, we show that both the Mht1 and Sam4 enzymes are capable of preventing R,S accumulation in Saccharomyces cerevisiae grown to stationary phase; deletion of both genes results in significant (R,S)-AdoMet accumulation. To our knowledge, this is the first time that such an accumulation of (R,S)-AdoMet has been reported in any organism. We show that yeast cells can take up (R,S)-AdoMet from the medium using the same transporter (Sam3) used to import (S,S)-AdoMet. Our results suggest that yeast cells have evolved efficient mechanisms not only for dealing with the spontaneous intracellular generation of the (R,S)-AdoMet degradation product but for utilizing environmental sources as a nutrient.  相似文献   
790.
GWASs have identified numerous genetic variants associated with a wide variety of diseases, yet despite the wide availability of genetic testing the insights that would enhance the interpretability of these results are not widely available to members of the public. As a proof of concept and demonstration of technological feasibility, we developed PAGEANT (Personal Access to Genome & Analysis of Natural Traits), usable through Graphical User Interface or command line-based version, aiming to serve as a protocol and prototype that guides the overarching design of genetic reporting tools. PAGEANT is structured across five core modules, summarized by five Qs: (i) quality assurance of the genetic data; (ii) qualitative assessment of genetic characteristics; (iii) quantitative assessment of health risk susceptibility based on polygenic risk scores and population reference; (iv) query of third-party variant databases (e.g. ClinVAR and PharmGKB) and (v) quick Response code of genetic variants of interest. Literature review was conducted to compare PAGEANT with academic and industry tools. For 2504 genomes made publicly available through the 1000 Genomes Project, we derived their genomic characteristics for a suite of qualitative and quantitative traits. One exemplary trait is susceptibility to COVID-19, based on the most up-to-date scientific findings reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号