首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   392篇
  免费   30篇
  2022年   3篇
  2021年   3篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   13篇
  2014年   18篇
  2013年   24篇
  2012年   32篇
  2011年   18篇
  2010年   24篇
  2009年   18篇
  2008年   23篇
  2007年   16篇
  2006年   26篇
  2005年   15篇
  2004年   18篇
  2003年   14篇
  2002年   7篇
  2001年   4篇
  2000年   6篇
  1999年   5篇
  1998年   8篇
  1996年   4篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   9篇
  1991年   5篇
  1990年   8篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1982年   2篇
  1981年   8篇
  1979年   3篇
  1978年   6篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1969年   2篇
  1968年   4篇
  1967年   2篇
  1964年   1篇
排序方式: 共有422条查询结果,搜索用时 15 毫秒
51.
52.
A unifying hypothesis for the genesis of cerebral malaria proposes that parasite antigens (released by replication in blood, surface molecules on parasitized erythrocytes, or merozoites) activate platelets that, in turn, contribute to the activation of the inflammatory response and increased levels of endothelial cell adhesion molecules (eCAMs). Increased levels of eCAMs result in further parasitized-erythrocyte sequestration and marked local inflammation that might disrupt the brain microvasculature, which cannot be repaired by the hemostasis system because of its procoagulant state. Disruption of the brain microvasculature can result in vascular leak and/or hemorrhaging into the brain; similar processes can occur in other vascular beds, including the lung. The blockage of functional capillaries by parasitized and/or unparasitized erythrocytes with decreased deformability or rosettes is also a key interaction between hemostasis and mechanical obstruction leading to pathogenesis. The events resulting in the development of cerebral malaria complications are multi-factorial, encompassing a dynamic interaction between three processes, thereby explaining the complexity of this deadly syndrome.  相似文献   
53.
Homeostasis implies constant operational defence mechanisms, against both external and internal threats. Infectious agents are prominent among such threats. During infection, the host elicits the release of a vast array of molecules and numerous cell-cell interactions are triggered. These pleiomorphic mediators and cellular effects are of prime importance in the defence of the host, both in the systemic circulation and at sites of tissue injury, for example, the blood-brain barrier (BBB). Here, we focus on the interactions between the endothelium, astrocytes, and the molecules they release. Our review addresses these interactions during infectious neurological diseases of various origins, especially cerebral malaria (CM). Two novel elements of the interplay between endothelium and astrocytes, microparticles and the kynurenine pathway, will also be discussed.  相似文献   
54.
55.
Platelet-derived microparticles (PMP) bind and modify the phenotype of many cell types including endothelial cells. Recently, we showed that PMP were internalized by human brain endothelial cells (HBEC). Here we intend to better characterize the internalization mechanisms of PMP and their intracellular fate. Confocal microscopy analysis of PKH67-labelled PMP distribution in HBEC showed PMP in early endosome antigen 1 positive endosomes and in LysoTracker-labelled lysosomes, confirming a role for endocytosis in PMP internalization. No fusion of calcein-loaded PMP with HBEC membranes was observed. Quantification of PMP endocytosis using flow cytometry revealed that it was partially inhibited by trypsin digestion of PMP surface proteins and by extracellular Ca(2+) chelation by EDTA, suggesting a partial role for receptor-mediated endocytosis in PMP uptake. This endocytosis was independent of endothelial receptors such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and was not increased by tumour necrosis factor stimulation of HBEC. Platelet-derived microparticle internalization was dramatically increased in the presence of decomplemented serum, suggesting a role for PMP opsonin-dependent phagocytosis. Platelet-derived microparticle uptake was greatly diminished by treatment of HBEC with cytochalasin D, an inhibitor of microfilament formation required for both phagocytosis and macropinocytosis, with methyl-β-cyclodextrin that depletes membrane cholesterol needed for macropinocytosis and with amiloride that inhibits the Na(+)/H(+) exchanger involved in macropinocytosis. In conclusion, PMP are taken up by active endocytosis in HBEC, involving mechanisms consistent with both phagocytosis and macropinocytosis. These findings identify new processes by which PMP could modify endothelial cell phenotype and functions.  相似文献   
56.
The balance between pro-inflammatory and regulatory immune responses in determining optimal T cell activation is vital for the successful resolution of microbial infections. This balance is maintained in part by the negative regulators of T cell activation, CTLA-4 and PD-1/PD-L, which dampen effector responses during chronic infections. However, their role in acute infections, such as malaria, remains less clear. In this study, we determined the contribution of CTLA-4 and PD-1/PD-L to the regulation of T cell responses during Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM) in susceptible (C57BL/6) and resistant (BALB/c) mice. We found that the expression of CTLA-4 and PD-1 on T cells correlates with the extent of pro-inflammatory responses induced during PbA infection, being higher in C57BL/6 than in BALB/c mice. Thus, ECM develops despite high levels of expression of these inhibitory receptors. However, antibody-mediated blockade of either the CTLA-4 or PD-1/PD-L1, but not the PD-1/PD-L2, pathways during PbA-infection in ECM-resistant BALB/c mice resulted in higher levels of T cell activation, enhanced IFN-γ production, increased intravascular arrest of both parasitised erythrocytes and CD8+ T cells to the brain, and augmented incidence of ECM. Thus, in ECM-resistant BALB/c mice, CTLA-4 and PD-1/PD-L1 represent essential, independent and non-redundant pathways for maintaining T cell homeostasis during a virulent malaria infection. Moreover, neutralisation of IFN-γ or depletion of CD8+ T cells during PbA infection was shown to reverse the pathologic effects of regulatory pathway blockade, highlighting that the aetiology of ECM in the BALB/c mice is similar to that in C57BL/6 mice. In summary, our results underscore the differential and complex regulation that governs immune responses to malaria parasites.  相似文献   
57.
58.
59.

Background

The Dystrophin-glycoprotein complex (DGC) comprises dystrophin, dystroglycan, sarcoglycan, dystrobrevin and syntrophin subunits. In muscle fibers, it is thought to provide an essential mechanical link between the intracellular cytoskeleton and the extracellular matrix and to protect the sarcolemma during muscle contraction. Mutations affecting the DGC cause muscular dystrophies. Most members of the DGC are also concentrated at the neuromuscular junction (NMJ), where their deficiency is often associated with NMJ structural defects. Hence, synaptic dysfunction may also intervene in the pathology of dystrophic muscles. Dystroglycan is a central component of the DGC because it establishes a link between the extracellular matrix and Dystrophin. In this study, we focused on the synaptic role of Dystroglycan (Dg) in Drosophila.

Methodology/Principal Findings

We show that Dg was concentrated postsynaptically at the glutamatergic NMJ, where, like in vertebrates, it controls the concentration of synaptic Laminin and Dystrophin homologues. We also found that synaptic Dg controlled the amount of postsynaptic 4.1 protein Coracle and alpha-Spectrin, as well as the relative subunit composition of glutamate receptors. In addition, both Dystrophin and Coracle were required for normal Dg concentration at the synapse. In electrophysiological recordings, loss of postsynaptic Dg did not affect postsynaptic response, but, surprisingly, led to a decrease in glutamate release from the presynaptic site.

Conclusion/Significance

Altogether, our study illustrates a conservation of DGC composition and interactions between Drosophila and vertebrates at the synapse, highlights new proteins associated with this complex and suggests an unsuspected trans-synaptic function of Dg.  相似文献   
60.
Landslides are common on the steep slopes of the subtropical montane forests in Northwestern (NW) Argentina (Yungas). Instrumental and tree-ring records from this region indicate that rainfall has increased during the second half of the 20th century and there has also been an increase in landslide events. We used dendroecological techniques to date the occurrence of landslides during the past 50 years and examine the relationships with regional precipitation trends. Alnus acuminata H.B.K. is the dominant species in the upper montane forest and colonizes the bare areas exposed by landslides. Landslide dating was based on the identification of suppression-release patterns in ring-width series from trees growing along the landslide scarps, in combination with age determination of trees growing on the landslide failure or depositional surfaces. We cored A. acuminata in three areas that span the latitudinal range of the montane forest in NW Argentina: Los Sosa (27°S), Hualinchay (26°S) and Yala (24°S). The results show that landslide occurrence (and therefore probability) is more frequent during summers with abundant rainfall. As General Circulation Models for subtropical South America predict an increase in summer precipitation during the 21st century, increased precipitation could induce changes in landslide regime that would lead to important environmental changes in these montane ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号