首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   392篇
  免费   30篇
  2022年   3篇
  2021年   3篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   13篇
  2014年   18篇
  2013年   24篇
  2012年   32篇
  2011年   18篇
  2010年   24篇
  2009年   18篇
  2008年   23篇
  2007年   16篇
  2006年   26篇
  2005年   15篇
  2004年   18篇
  2003年   14篇
  2002年   7篇
  2001年   4篇
  2000年   6篇
  1999年   5篇
  1998年   8篇
  1996年   4篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   9篇
  1991年   5篇
  1990年   8篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1982年   2篇
  1981年   8篇
  1979年   3篇
  1978年   6篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1969年   2篇
  1968年   4篇
  1967年   2篇
  1964年   1篇
排序方式: 共有422条查询结果,搜索用时 15 毫秒
101.
Cells of Escherichia coli ML308-225, harvested from the exponential phase, were heated in 50 mM potassium phosphate, and the loss in viability and inability to transport lactose, proline, and alpha-methylglucoside was compared. After cells were heated at 48 degrees C for 15 min, there was a 16% loss in viability and a similarly small reduction in the steady-state accumulation of lactose at 25 degrees C. The initial rates of lactose and proline transport were severely inhibited by heating at either 48 or 50 degrees C, but substantial recovery occurred within 5 to 7 min at 25 degrees C. Heating at 50 degrees C for 15 min caused an 86% loss in viability, but only a 53% decrease in the steady-state accumulation of lactose and only a 24% reduction in the initial rate of alpha-methylglucoside uptake. Twice as much alpha-methylglucoside was accumulated at 50 degrees C as at 25 degrees C. Although alpha-methylglucoside phosphate leaked from the cells at 50 degrees C, the concentration retained within the cells was about 500 times that externally, when only about 14% of the cells were viable. Overall, these results indicate that cells made nonviable by heating at 50 degrees C still have significant membrane integrity.  相似文献   
102.
103.
Nitric oxide (NO) plays a pivotal role in the modulation of multiple physiological processes. It acts as a messenger molecule within the cardiovascular system. NO is a highly unstable free radical in circulating blood and is oxidized rapidly to nitrite and nitrate. Recent studies suggest that nitrite has the potential to function as a surrogate of NO production under physiological and pathophysiological conditions and could therefore be of high relevance as a biochemical parameter in experimental and clinical studies. Under hypoxic conditions nitrite is reduced to bioactive NO by deoxyhemoglobin. This mechanism may represent a dynamic cycle of NO generation to adapt the demand and supply for the vascular system. Because of these potential biological functions the concentration of nitrite in blood is thought to be of particular importance. The determination of nitrite in biological matrices represents a considerable analytical challenge. Methodological problems often arise from pre-analytical sample preparation, sample contamination due to the ubiquity of nitrite, and from lack of selectivity and sensitivity. These analytical difficulties may be a plausible explanation for reported highly diverging concentrations of nitrite in the human circulation. The aim of this article is to review the methods of quantitative analysis of nitrite in the human circulation, notably in plasma and blood, and to discuss pre-analytical and analytical factors potentially affecting accurate quantification of nitrite in these human fluids.  相似文献   
104.
Keratinocyte growth factor protects the lung against various injurious stimuli. The protective mechanisms, however, are not yet fully understood. The aim of this study is to determine the influence of keratinocyte growth factor on the pulmonary capacity to synthesize acetylcholine, a potent regulator of pulmonary functions which is potentially involved in lung damage. Rats were treated twice (days 1 and 2) intratracheally with keratinocyte growth factor and analyzed at day 4. The mRNA expression of choline acetyltransferase - the acetylcholine synthesizing enzyme - was analyzed by real-time RT-PCR in the lung and in isolated alveolar epithelial type II cells. Choline acetyltransferase protein was assessed by immunoblotting and immunohistochemistry. Finally, pulmonary acetylcholine content was assessed biochemically. Keratinocyte growth factor-treatment led to decreased levels of choline acetyltransferase mRNA in the lung and in isolated alveolar epithelial type II cells. Accordingly, pulmonary choline acetyltransferase protein levels were reduced and pulmonary acetylcholine content declined from 2.8 nmol (control) to 0.4 nmol acetylcholine per gram of wet weight. In conclusion, the present data show that the potent regulator of pulmonary functions, acetylcholine, is produced by the major pulmonary target cell of keratinocyte growth factor, that is alveolar epithelial type II cells. Acetylcholine synthesis is down-regulated by keratinocyte growth factor administration which might contribute to lung protection and to harmonize surfactant homeostasis under conditions of keratinocyte growth factor-induced alveolar epithelial type II cell hyperplasia.  相似文献   
105.
Treelines have drawn persistent research interest as they can respond markedly to climate. However, the mechanisms that determine tree seedling recruitment and the response of the forest‐tundra ecotone to environmental changes remain poorly understood. We hypothesise that treeline tree seedling performance depends on the interplay between climatic and soil nutritional changes and facilitative and competitive interactions between trees and shrubs. We conducted a seedling transplantation experiment with Betula pubescens at a subarctic treeline, in northern Sweden, which followed a full factorial design with four treatment factors relating to environmental regimes of stress and resource availability: site (forest vs treeline); temperature (+/? passive warming); shrub presence (+/?Vaccinium myrtillus removal); and nutrient availability (+/? NPK addition). During three growing seasons we assessed the establishment and performance of Betula. The experimental manipulations caused highly significant effects on seedling performance. Although Vaccinium enhanced seedling survival and reduced the effects of excessive solar radiation and insect herbivory, the seedlings growing with the shrub had a poorer performance by the end of the experimental period. Also, seedlings in the forest had a poorer performance than those at the treeline. Betula seedlings showed a very pronounced and positive response to passive warming and to nutrient addition, but such effects were more evident at the treeline site and often interacted with the presence of Vaccinium. This experiment shows that shrub–tree interactions are important drivers of subarctic treeline dynamics and that they vary with time and space. Facilitation, competition, herbivory and environmental changes at the tree seedling stage act as important filters in structuring the forest–tundra ecotone. We demonstrate that changes in this ecotone cannot be simply predicted from changing temperature patterns alone, and that complex interactions need to be considered, not only between shrubs and trees, but also with herbivores and between warming and soil nutrient availability.  相似文献   
106.
Streptomyces ipomoeae is the causal agent of Streptomyces soil rot of sweet potato, a disease marked by highly necrotic destruction of adventitious roots, including the development of necrotic lesions on the fleshy storage roots. Streptomyces potato scab pathogens produce a phytotoxin (thaxtomin A) that appears to facilitate their entrance into host plants. S. ipomoeae produces a less-modified thaxtomin derivative (thaxtomin C) whose role in pathogenicity has not been examined. Here, we cloned and sequenced the thaxtomin gene cluster (txt) of S. ipomoeae, and we then constructed targeted txt mutants that no longer produced thaxtomin C. The mutants were unable to penetrate intact adventitious roots but still caused necrosis on storage-root tissue. These results, taken in context with previous histopathological study of S. ipomoeae infection, suggest that thaxtomin C plays an essential role in inter- and intracellular penetration of adventitious sweet potato roots by S. ipomoeae. Once inside the plant host, the pathogen uses one or more yet-to-be-determined factors to necrotize root tissue, including that of any storage roots it encounters.  相似文献   
107.
Severe attacks of bacterial blight were observed on young plants throughout the hazelnut growing areas in Chile. The incidence of the disease in nurseries and fields ranged from 60–90%. The causal agent was identified as Xanthomonas arboricola pv. corylina, based on phenotypic and genetic tests.  相似文献   
108.
An atypical peg-like terminal constriction (“peg”) on metaphase chromosomes of the plant genus Oziroë could be identified as a nucleolus organizing region (NOR) by detecting 45S rDNA with correlative light microscopy (LM) and scanning electron microscopy (SEM) in situ hybridization (ISH). Using high-resolution 3D analytical SEM, the architecture and DNA distribution of the peg-like NOR were characterized as typical for chromosomes, albeit with significantly smaller chromomeres. ISH procedure was improved for SEM concerning signal localization, labeling efficiency, and structural preservation, allowing 3D SEM analysis of the peg-like NOR structure and rDNA distribution for the first time. It could be shown that implementation of FluoroNanogold markers is an attractive tool that allows efficient immunodection in both LM and SEM. A model is proposed for the peg structure and its mode of condensation.  相似文献   
109.
110.
Cell-to-cell communication in bacteria is mediated by quorum-sensing systems (QSS) that produce chemical signal molecules called autoinducers (AI). In particular, LuxS/AI-2-dependent QSS has been proposed to act as a universal lexicon that mediates intra- and interspecific bacterial behavior. Here we report that the model organism Bacillus subtilis operates a luxS-dependent QSS that regulates its morphogenesis and social behavior. We demonstrated that B. subtilis luxS is a growth-phase-regulated gene that produces active AI-2 able to mediate the interspecific activation of light production in Vibrio harveyi. We demonstrated that in B. subtilis, luxS expression was under the control of a novel AI-2-dependent negative regulatory feedback loop that indicated an important role for AI-2 as a signaling molecule. Even though luxS did not affect spore development, AI-2 production was negatively regulated by the master regulatory proteins of pluricellular behavior, SinR and Spo0A. Interestingly, wild B. subtilis cells, from the undomesticated and probiotic B. subtilis natto strain, required the LuxS-dependent QSS to form robust and differentiated biofilms and also to swarm on solid surfaces. Furthermore, LuxS activity was required for the formation of sophisticated aerial colonies that behaved as giant fruiting bodies where AI-2 production and spore morphogenesis were spatially regulated at different sites of the developing colony. We proposed that LuxS/AI-2 constitutes a novel form of quorum-sensing regulation where AI-2 behaves as a morphogen-like molecule that coordinates the social and pluricellular behavior of B. subtilis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号