首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21958篇
  免费   1979篇
  国内免费   236篇
  2023年   121篇
  2022年   230篇
  2021年   554篇
  2020年   332篇
  2019年   366篇
  2018年   458篇
  2017年   389篇
  2016年   615篇
  2015年   1017篇
  2014年   1009篇
  2013年   1292篇
  2012年   1595篇
  2011年   1459篇
  2010年   931篇
  2009年   926篇
  2008年   1238篇
  2007年   1113篇
  2006年   1036篇
  2005年   946篇
  2004年   979篇
  2003年   894篇
  2002年   812篇
  2001年   525篇
  2000年   444篇
  1999年   412篇
  1998年   240篇
  1997年   156篇
  1996年   163篇
  1995年   183篇
  1994年   160篇
  1993年   146篇
  1992年   249篇
  1991年   255篇
  1990年   199篇
  1989年   227篇
  1988年   195篇
  1987年   177篇
  1986年   157篇
  1985年   170篇
  1984年   155篇
  1983年   142篇
  1982年   93篇
  1981年   108篇
  1980年   100篇
  1979年   125篇
  1978年   99篇
  1977年   94篇
  1975年   84篇
  1974年   86篇
  1973年   79篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
31.
32.
Three-dimensional scalar pressure distributions were measured in solid tissue near bony prominences in vitro in meat and in vivo in pigs using silicon pressure sensors. Data are in accord with previous theoretical models and indicate that pressure is three to five times higher internally near a bony prominence than it is at the skin over the prominence. Pressure sores are thus thought to begin internally; by the time they are evident at the skin, the sore has worked its way completely from bone to skin. This conclusion is in accord with previous clinical data. Future measurement of local vector forces is needed to fully characterize the force distribution in vivo.  相似文献   
33.
Resistance to HIV-1 integrase (IN) inhibitor raltegravir (RAL), is encoded by mutations in the IN region of the pol gene. The emergence of the N155H mutation was replaced by a pattern including the Y143R/C/H mutations in three patients with anti-HIV treatment failure. Cloning analysis of the IN gene showed an independent selection of the mutations at loci 155 and 143. Characterization of the phenotypic evolution showed that the switch from N155H to Y143C/R was linked to an increase in resistance to RAL. Wild-type (WT) IN and IN with mutations Y143C or Y143R were assayed in vitro in 3′end-processing, strand transfer and concerted integration assays. Activities of mutants were moderately impaired for 3′end-processing and severely affected for strand transfer. Concerted integration assay demonstrated a decrease in mutant activities using an uncleaved substrate. With 3′end-processing assay, IC50 were 0.4 µM, 0.9 µM (FC = 2.25) and 1.2 µM (FC = 3) for WT, IN Y143C and IN Y143R, respectively. An FC of 2 was observed only for IN Y143R in the strand transfer assay. In concerted integration, integrases were less sensitive to RAL than in ST or 3′P but mutants were more resistant to RAL than WT.  相似文献   
34.
A cytosolic, macromolecular factor required for the cholera toxin-dependent activation of pigeon erythrocyte adenylate cyclase and cholera toxin-dependent ADP-ribosylation of a membrane-bound 43 000 dalton polypeptide has been purified 1100-fold from horse erythrocyte cytosol using organic solvent precipitation and heat treatment. This factor, 13 000 daltons, does not absorb to anionic or cationic exchange resins, is sensitive to trypsin or 10% trichloroacetic acid and is not extractable by diethyl ether. Activation of adenylate cyclase by cholera toxin requires the simultaneous presence of ATP (including possible trace GTP), NAD+, dithiothreitol, cholera toxin, membranes and the cytosolic macromolecular factor. Reversal of cholera toxin activation of adenylate cyclase, and of the toxin-dependent ADP-ribosylation, requires the presence of the cytosolic factor. The ability of the purified cytosolic factor to influence the hormonal sensitivity of liver membrane adenylate cyclase may provide clues to its physiological functions.  相似文献   
35.
A familial mutation in SRY, the gene coding for the testis-determining factor TDF, was identified in an XY female with gonadal dysgenesis, her father, her two brothers and her uncle. The mutation consists of a T to C transition in the region of the SRY gene coding for a protein motif known as the high mobility group (HMG) box, a protein domain known to confer DNA-binding specificity on the SRY protein. This point mutation results in the substitution, at amino acid position 109, of a serine residue for phenylalanine, a conserved aromatic residue in almost all HMG box motifs known. This F109S mutation was not found in 176 male controls. When recombinant wildtype SRY and SRYF109S mutant protein were tested in vitro for binding to the target site AAC AAAG, no differences in DNA-binding activity were observed. These results imply that the F109S mutation either is a rare neutral sequence variant, or produces an SRY protein with slightly altered in vivo activity, the resulting sex phenotype depending on the genetic back-ground or environmental factors.This paper is dedicated by G. S. to Professor Ulrich Wolf on the occasion of his 60th birthday  相似文献   
36.
Gamma-glutamylcysteine synthetase (GCS) catalyses the first step of glutathione (GSH) biosynthesis and is considered to be the rate-limiting step of this pathway. In several experimental systems, GCS overexpression has been associated with GSH pool expansion and drug resistance. In this report, we describe a mutant line of Chinese hamster fibroblasts that overexpress this activity by 4-5 times, due to the amplification of the gene encoding the catalytic subunit of GCS. These mutant cells contained a wild-type steady-state level of GSH and, after depletion, synthesized GSH at the same rate as wild-type cells because their rate of endogenous production of cysteine was limiting. An exogenous supply of cysteine expanded the pool of GSH in mutant cells by 80% but did not increase that of wild-type cells, and, in GSH-depleted cells, increased the rate of GSH biosynthesis by eight and 35-times in wild-type and mutant cells, respectively. These experiments indicated that GCS overexpression had no consequence on the metabolism of GSH, unless a supply of cysteine was provided. Mutant cells were not resistant to cisplatin or nitrogen mustard.  相似文献   
37.
3T3C2 mouse fibroblasts rendered permeable to (α?32P)NAD+ show cholera toxin-dependent labeling of a 45,000 m.w. protein and of a doublet of polypeptides around 52,000 m.w. These same bands are ADP-ribosylated in broken cells. Membranes prepared from pigeon erythrocytes pretreated with choleragen show a decrease in subsequent cholera toxin-specific ADP-ribosylation of a 43,000 m.w. polypeptide. Both whole cell and broken cell adenylate cyclase activation and toxin-specific ADP-ribosylation are reversed specifically by low pH and high concentrations of toxin and nicotinamide in all systems. Thus ADP-ribosylation appears to be relevant to the molecular action of choleragen in whole cells as well as in broken cells.  相似文献   
38.
39.
The distribution-free test against ordered alternatives proposed by Jonckheere (1954) is based on the Kendall's rank correlation coefficient τ. A new rank test is proposed and illustrated with a numerical example. The proposed test is based on Spearman's σ and has similar functional structure as the Kruskal-Wallis test. A useful by-product is a test for departure from a trend.  相似文献   
40.
Stbd1 is a protein of previously unknown function that is most prevalent in liver and muscle, the major sites for storage of the energy reserve glycogen. The protein is predicted to contain a hydrophobic N terminus and a C-terminal CBM20 glycan binding domain. Here, we show that Stbd1 binds to glycogen in vitro and that endogenous Stbd1 locates to perinuclear compartments in cultured mouse FL83B or Rat1 cells. When overexpressed in COSM9 cells, Stbd1 concentrated at enlarged perinuclear structures, co-localized with glycogen, the late endosomal/lysosomal marker LAMP1 and the autophagy protein GABARAPL1. Mutant Stbd1 lacking the N-terminal hydrophobic segment had a diffuse distribution throughout the cell. Point mutations in the CBM20 domain did not change the perinuclear localization of Stbd1, but glycogen was no longer concentrated in this compartment. Stable overexpression of glycogen synthase in Rat1WT4 cells resulted in accumulation of glycogen as massive perinuclear deposits, where a large fraction of the detectable Stbd1 co-localized. Starvation of Rat1WT4 cells for glucose resulted in dissipation of the massive glycogen stores into numerous and much smaller glycogen deposits that retained Stbd1. In vitro, in cells, and in animal models, Stbd1 consistently tracked with glycogen. We conclude that Stbd1 is involved in glycogen metabolism by binding to glycogen and anchoring it to membranes, thereby affecting its cellular localization and its intracellular trafficking to lysosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号