首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1436篇
  免费   89篇
  1525篇
  2024年   2篇
  2023年   9篇
  2022年   19篇
  2021年   34篇
  2020年   21篇
  2019年   24篇
  2018年   29篇
  2017年   31篇
  2016年   53篇
  2015年   76篇
  2014年   85篇
  2013年   97篇
  2012年   130篇
  2011年   130篇
  2010年   89篇
  2009年   69篇
  2008年   87篇
  2007年   84篇
  2006年   77篇
  2005年   70篇
  2004年   86篇
  2003年   55篇
  2002年   56篇
  2001年   10篇
  2000年   6篇
  1999年   16篇
  1998年   12篇
  1997年   10篇
  1996年   11篇
  1995年   5篇
  1994年   12篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
排序方式: 共有1525条查询结果,搜索用时 0 毫秒
21.
Park SH  Kim CM  Je BI  Park SH  Park SJ  Piao HL  Xuan YH  Choe MS  Satoh K  Kikuchi S  Lee KH  Cha YS  Ahn BO  Ji HS  Yun DW  Lee MC  Suh SC  Eun MY  Han CD 《Planta》2007,227(1):1-12
OSH6 (Oryza sativa Homeobox6) is an ortholog of lg3 (Liguleless3) in maize. We generated a novel allele, termed OSH6-Ds, by inserting a defective Ds element into the third exon of OSH6, which resulted in a truncated OSH6 mRNA. The truncated mRNA was expressed ectopically in leaf tissues and encoded the N-terminal region of OSH6, which includes the KNOX1 and partial KNOX2 subdomains. This recessive mutant showed outgrowth of bracts or produced leaves at the basal node of the panicle. These phenotypes distinguished it from the OSH6 transgene whose ectopic expression led to a “blade to sheath transformation” phenotype at the midrib region of leaves, similar to that seen in dominant Lg3 mutants. Expression of a similar truncated OSH6 cDNA from the 35S promoter (35S::ΔOSH6) confirmed that the ectopic expression of this product was responsible for the aberrant bract development. These data suggest that OSH6-Ds interferes with a developmental mechanism involved in bract differentiation, especially at the basal nodes of panicles. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
22.
The aim of this study was to determine the optimal route of mesenchymal stem cell (MSC) transplantation. To this end, gene expression profiling was performed to compare the effects of intratracheal (IT) versus intravenous (IV) MSC administration. Furthermore, the therapeutic efficacy of each route to protect against neonatal hyperoxic lung injury was also determined. Newborn Sprague-Dawley rats were exposed to hyperoxia (90% oxygen) from birth for 14 days. Human umbilical cord blood-derived MSCs labeling with PKH26 were transplanted through either the IT (5×105) or IV (2×106) route at postnatal day (P) 5. At P14, lungs were harvested for histological, biochemical and microarray analyses. Hyperoxic conditions induced an increase in the mean linear intercept and mean alveolar volume (MAV), indicative of impaired alveolarization. The number of ED-1 positive cells was significantly decreased by both IT and IV transplantations. However, IT administration of MSCs resulted in a greater decrease in MAV and ED-1 positive cells compared to IV administration. Moreover, the number of TUNEL-positive cells was significantly decreased in the IT group, but not in the IV group. Although the IT group received only one fourth of the number of MSCs that the IV group did, a significantly higher number of donor cell-derived red PKH 26 positivity were recovered in the IT group. Hyperoxic conditions induced the up regulation of genes associated with the inflammatory response, such as macrophage inflammatory protein-1 α, tumor necrosis factor-α and inter leukin-6; genes associated with cell death, such as p53 and caspases; and genes associated with fibrosis, such as connective tissue growth factor. In contrast, hyperoxic conditions induced the dwon-regulation of vascular endothelial growth factor and hepatocyte growth factor. These hyperoxia-induced changes in gene expression were decreased in the IT group, but not in the IV group. Thus, local IT MSC transplantation was more effective than systemic IV MSC administration in protecting against neonatal hyperoxic lung injury.  相似文献   
23.
Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6) and LAD2 cells), mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6) and LAD2 cells) that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i). The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13), and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro.  相似文献   
24.
Glycosylation affects the circulatory half-lives of therapeutic proteins. However, the effects of an additional N-glycosylation in the unstructured region or the loop region of alpha-1 antitrypsin (A1AT) on the circulatory half-life of the protein are largely unknown. In this study, we investigated the role of an additional N-glycosylation site (Q4N/D6T, Q9N, D12N/S14T, A70N, G148T, R178N, or V212N) to the three naturally occurring N-glycosylation sites in human A1AT. A single-dose (445 μg/kg) pharmacokinetic study using male Sprague-Dawley rats showed that, among the seven recombinant A1AT (rA1AT) mutants, Q9N and D12N/S14T showed the highest serum concentration and area under the curve values, as well as similar circulatory half-lives that were 2.2-fold higher than plasma-derived A1AT and 1.7-fold higher than wild-type rA1AT. We further characterized the Q9N mutant regarding the N-glycan profile, sialic acid content, protease inhibitory activity, and protein stability. The results indicate that an additional N-glycosylation in the flexible N-terminal region increases the circulatory half-life of rA1AT without altering its protease inhibitory activity. Our study provides novel insight into the use of rA1AT for the treatment of emphysema with an increased injection interval relative to the clinically used plasma-derived A1AT.  相似文献   
25.
Photoinactivation of Photosystem (PS) II in vivo was investigated by cumulative exposure of pea, rice and spinach leaves to light pulses of variable duration from 2 to 100 s, separated by dark intervals of 30 min. During each light pulse, photosynthetic induction occurred to an extent depending on the time of illumination, but steady-state photosynthesis had not been achieved. During photosynthetic induction, it is clearly demonstrated that reciprocity of irradiance and duration of illumination did not hold: hence the same cumulative photon exposure (mol m–2) does not necessarily give the same extent of photoinactivation of PS II. This contrasts with the situation of steady-state photosynthesis where the photoinactivation of PS II exhibited reciprocity of irradiance and duration of illumination (Park et al. (1995) Planta 196: 401–411). We suggest that, for reciprocity to hold between irradiance and duration of illumination, there must be a balance between photochemical (qP) and non-photochemical (NPQ) quenching at all irradiances. The index of susceptibility to light stress, which represents an intrinsic ability of PS II to balance photochemical and non-photochemical quenching, is defined by the quotient (1-qP)/NPQ. Although constant in steady-state photosynthesis under a wide range of irradiance (Park et al. (1995). Plant Cell Physiol 36: 1163–1169), this index of susceptibility for spinach leaves declined extremely rapidly during photosynthetic induction at a given irradiance, and, at a given cumulative photon exposure, was dependent on irradiance. During photosynthetic induction, only limited photoprotective strategies are developed: while the transthylakoid pH gradient conferred some degree of photoprotection, neither D1 protein turnover nor the xanthophyll cycle was operative. Thus, PS II is more easily photoinactivated during photosynthetic induction, a phenomenon that may have relevance for understorey leaves experiencing infrequent, short sunflecks.Abbreviations D1 protein psbA gene product - DTT dithiothreitol - Fv, Fm, Fo variable, maximum, and initial (corresponding to open traps) chlorophyll fluorescence yield, respectively - NPQ non-photochemical quenching - PS Photosystem - QA primary quinone acceptor of PS II - qP photochemical quenching coefficient  相似文献   
26.
27.
Native smooth muscle L-type Ca(v)1.2 calcium channels have been shown to support a fraction of Ca(2+) currents with a window current that is close to resting potential. The smooth muscle L-type Ca(2+) channels are also more susceptible to inhibition by dihydropyridines (DHPs) than the cardiac channels. It was hypothesized that smooth muscle Ca(v)1.2 channels exhibiting hyperpolarized shift in steady-state inactivation would contribute to larger inhibition by DHP, in addition to structural differences of the channels generated by alternative splicing that modulate DHP sensitivities. In addition, it has also been shown that alternative splicing modulates DHP sensitivities by generating structural differences in the Ca(v)1.2 channels. Here, we report a smooth muscle L-type Ca(v)1.2 calcium channel splice variant, Ca(v)1.2SM (1/8/9(*)/32/Delta33), that when expressed in HEK 293 cells display hyperpolarized shifts for steady-state inactivation and activation potentials when compared with the established Ca(v)1.2b clone (1/8/9(*)/32/33). This variant activates from more negative potentials and generates a window current closer to resting membrane potential. We also identified the predominant cardiac isoform Ca(v)1.2CM clone (1a/8a/Delta9(*)/32/33) that is different from the established Ca(v)1.2a (1a/8a/Delta9(*)/31/33). Importantly, Ca(v)1.2SM channels were shown to be more sensitive to nifedipine blockade than Ca(v)1.2b and cardiac Ca(v)1.2CM channels when currents were recorded in either 5 mM Ba(2+) or 1.8 mM Ca(2+) external solutions. This is the first time that a smooth muscle Ca(v)1.2 splice variant has been identified functionally to possess biophysical property that can be linked to enhanced state-dependent block by DHP.  相似文献   
28.
29.
Drosophila neural stem cells, larval brain neuroblasts (NBs), align their mitotic spindles along the apical/basal axis during asymmetric cell division (ACD) to maintain the balance of self-renewal and differentiation. Here, we identified a protein complex composed of the tumor suppressor anastral spindle 2 (Ana2), a dynein light-chain protein Cut up (Ctp), and Mushroom body defect (Mud), which regulates mitotic spindle orientation. We isolated two ana2 alleles that displayed spindle misorientation and NB overgrowth phenotypes in larval brains. The centriolar protein Ana2 anchors Ctp to centrioles during ACD. The centriolar localization of Ctp is important for spindle orientation. Ana2 and Ctp localize Mud to the centrosomes and cell cortex and facilitate/maintain the association of Mud with Pins at the apical cortex. Our findings reveal that the centrosomal proteins Ana2 and Ctp regulate Mud function to?orient the mitotic spindle during NB asymmetric division.  相似文献   
30.
Vitex rotundifolia L.f. is a woody perennial and has sexual and asexual modes of reproduction. Allozyme study was conducted on 550 plants in 13 Korean populations. The levels of genetic variability and divergence within and among populations, respectively, are considerably lower and higher than the mean values for woody plants with similar life history tralts. Mean percentage of polymorphic loci (P P), mean number of alleles per locus (A P), and mean genetic diversity (He P) within populations ofV. rotundifolia were: 16.7%, 1.21, and 0.047. On average, about 79% of the total variation inV. rotundifolia was common to all populations (meanG ST=0.208). In addition, significant differences in allele frequencies among populations were found in all polymorphic loci examined (P<0.001). On the other hand, levels of genotypic diversity within and among populations were moderate. About 44% (18/41) of multilocus genotypes were “local genotypes” (genotypes occurring in only one population), whereas only one “widespread genotype” (genotypes occurring in more than 75% of the populations) were detected. The mean number of multilocus genotypes per population (G) and mean genotypic diversity index (D G) were 8.4 and 0.74, respectively. Most common multilocus genotypes found in populations were homozygous for five polymorphic loci. The abundance of ramets of these genets is responsible for the low levels of expected heterozygosity within populations. The results indicate that clonal reproduction may act as an enhancer of genetic drift by reducing effective size of local populations ofV. rotundifolia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号