首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341篇
  免费   56篇
  397篇
  2022年   6篇
  2021年   4篇
  2020年   6篇
  2019年   7篇
  2018年   14篇
  2017年   9篇
  2016年   9篇
  2015年   13篇
  2014年   20篇
  2013年   23篇
  2012年   23篇
  2011年   23篇
  2010年   21篇
  2009年   13篇
  2008年   8篇
  2007年   20篇
  2006年   12篇
  2005年   7篇
  2004年   10篇
  2003年   7篇
  2002年   14篇
  2001年   7篇
  2000年   12篇
  1999年   12篇
  1998年   2篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   2篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1977年   2篇
  1976年   6篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1970年   2篇
  1968年   6篇
  1967年   3篇
  1965年   3篇
  1960年   3篇
排序方式: 共有397条查询结果,搜索用时 15 毫秒
71.
Prions are misfolded infectious proteins responsible for a group of fatal neurodegenerative diseases termed transmissible spongiform encephalopathy or prion diseases. Chronic Wasting Disease (CWD) is the prion disease with the highest spillover potential, affecting at least seven Cervidae (deer) species. The zoonotic potential of CWD is inconclusive and cannot be ruled out. A risk of infection for other domestic and wildlife species is also plausible. Here, we review the current status of the knowledge with respect to CWD ecology in wildlife. Our current understanding of the geographic distribution of CWD lacks spatial and temporal detail, does not consider the biogeography of infectious diseases, and is largely biased by sampling based on hunters' cooperation and funding available for each region. Limitations of the methods used for data collection suggest that the extent and prevalence of CWD in wildlife is underestimated. If the zoonotic potential of CWD is confirmed in the short term, as suggested by recent results obtained in experimental animal models, there will be limited accurate epidemiological data to inform public health. Research gaps in CWD prion ecology include the need to identify specific biological characteristics of potential CWD reservoir species that better explain susceptibility to spillover, landscape and climate configurations that are suitable for CWD transmission, and the magnitude of sampling bias in our current understanding of CWD distribution and risk. Addressing these research gaps will help anticipate novel areas and species where CWD spillover is expected, which will inform control strategies. From an ecological perspective, control strategies could include assessing restoration of natural predators of CWD reservoirs, ultrasensitive CWD detection in biotic and abiotic reservoirs, and deer density and landscape modification to reduce CWD spread and prevalence.  相似文献   
72.
Podocyte or endothelial cell VEGF-A knockout causes thrombotic microangiopathy in adult mice. To study the mechanism involved in acute and local injury caused by low podocyte VEGF-A we developed an inducible, podocyte-specific VEGF-A knockdown mouse, and we generated an immortalized podocyte cell line (VEGF(KD)) that downregulates VEGF-A upon doxycycline exposure. Tet-O-siVEGF:podocin-rtTA mice express VEGF shRNA in podocytes in a doxycycline-regulated manner, decreasing VEGF-A mRNA and VEGF-A protein levels in isolated glomeruli to ~20% of non-induced controls and urine VEGF-A to ~30% of control values a week after doxycycline induction. Induced tet-O-siVEGF:podocin-rtTA mice developed acute renal failure and proteinuria, associated with mesangiolysis and microaneurisms. Glomerular ultrastructure revealed endothelial cell swelling, GBM lamination and podocyte effacement. VEGF knockdown decreased podocyte fibronectin and glomerular endothelial alpha(V)beta(3) integrin in vivo. VEGF receptor-2 (VEGFR2) interacts with beta(3) integrin and neuropilin-1 in the kidney in vivo and in VEGF(KD) podocytes. Podocyte VEGF knockdown disrupts alpha(V)beta(3) integrin activation in glomeruli, detected by WOW1-Fab. VEGF silencing in cultured VEGF(KD) podocytes downregulates fibronectin and disrupts alpha(V)beta(3) integrin activation cell-autonomously. Collectively, these studies indicate that podocyte VEGF-A regulates alpha(V)beta(3) integrin signaling in the glomerulus, and that podocyte VEGF knockdown disrupts alpha(V)beta(3) integrin activity via decreased VEGFR2 signaling, thereby damaging the three layers of the glomerular filtration barrier, causing proteinuria and acute renal failure.  相似文献   
73.
74.
75.
The Hedgehog (Hh) signaling pathway plays critical instructional roles during embryonic development. Misregulation of Hh/Gli signaling is a major causative factor in human congenital disorders and in a variety of cancers. The zebrafish is a powerful genetic model for the study of Hh signaling during embryogenesis, as a large number of mutants that affect different components of the Hh/Gli signaling system have been identified. By performing global profiling of gene expression in different Hh/Gli gain- and loss-of-function scenarios we identified known (e.g., ptc1 and nkx2.2a) and novel Hh-regulated genes that are differentially expressed in embryos with altered Hh/Gli signaling function. By uncovering changes in tissue-specific gene expression, we revealed new embryological processes that are influenced by Hh signaling. We thus provide a comprehensive survey of Hh/Gli-regulated genes during embryogenesis and we identify new Hh-regulated genes that may be targets of misregulation during tumorigenesis.  相似文献   
76.
Magi 4, now renamed δ-hexatoxin-Mg1a, is a 43-residue neurotoxic peptide from the venom of the hexathelid Japanese funnel-web spider (Macrothele gigas) with homology to δ-hexatoxins from Australian funnel-web spiders. It binds with high affinity to receptor site 3 on insect voltage-gated sodium (NaV) channels but, unlike δ-hexatoxins, does not compete for the related site 3 in rat brain despite being previously shown to be lethal by intracranial injection. To elucidate differences in NaV channel selectivity, we have undertaken the first characterization of a peptide toxin on a broad range of mammalian and insect NaV channel subtypes showing that δ-hexatoxin-Mg1a selectively slows channel inactivation of mammalian NaV1.1, NaV1.3, and NaV1.6 but more importantly shows higher affinity for insect NaV1 (para) channels. Consequently, δ-hexatoxin-Mg1a induces tonic repetitive firing of nerve impulses in insect neurons accompanied by plateau potentials. In addition, we have chemically synthesized and folded δ-hexatoxin-Mg1a, ascertained the bonding pattern of the four disulfides, and determined its three-dimensional solution structure using NMR spectroscopy. Despite modest sequence homology, we show that key residues important for the activity of scorpion α-toxins and δ-hexatoxins are distributed in a topologically similar manner in δ-hexatoxin-Mg1a. However, subtle differences in the toxin surfaces are important for the novel selectivity of δ-hexatoxin-Mg1a for certain mammalian and insect NaV channel subtypes. As such, δ-hexatoxin-Mg1a provides us with a specific tool with which to study channel structure and function and determinants for phylum- and tissue-specific activity.Voltage-gated sodium (NaV)4 channels are responsible for the generation and propagation of electrical signals in excitable cells. At least nine different genes encoding distinct NaV channels isoforms have been identified, and functionally expressed, in mammals (1). They are characterized by their sensitivity to TTX, with NaV1.5, NaV1.8, and NaV1.9 being TTX-insensitive or TTX-resistant, and the remaining subtypes being sensitive to nanomolar concentrations of TTX. In addition, localization of the subtypes also varies, with NaV1.1–1.3 mostly distributed in the central nervous system, NaV1.6–1.9 principally located in the peripheral nervous system, and NaV1.4 and NaV1.5 found in skeletal and cardiac muscle, respectively. The structural diversity of NaV channels also coincides with variations in physiological and pharmacological properties (2). In contrast, insects express only one gene (para) that undergoes extensive alternative splicing and RNA editing (3). The para-encoded NaV channel is exceptionally well conserved across diverse orders of insects, with the level of identity ranging from 87 to 98% (3). This is one reason why insecticides that target insect NaV channels have broad activity across many insect orders. In contrast, para-type NaV channels have significantly lower levels of identity with the various types of mammalian NaV channels with the level of identity typically around 50–60% (3). This explains why a high degree of phylogenetic specificity can be achieved with both NaV channel toxins and insecticides that target the NaV channel.At least seven distinct toxin-binding sites have been identified by radioligand binding and electrophysiological studies on vertebrate and insect NaV channels (4, 5). Toxins interacting with these neurotoxin receptor sites have been instrumental in the study of NaV channel topology, function, and pharmacology (6). In particular, a wide range of scorpion α-toxins, sea anemone toxins, and spider δ-hexatoxins (formerly δ-atracotoxins (7)) compete for binding to receptor site-3 on the extracellular surface of NaV channels. These polypeptide toxins all inhibit the fast inactivation of NaV channels to prolong Na+ currents (INa), despite huge diversity in primary and tertiary structures (8, 9). Nevertheless, receptor site-3 has not yet been fully characterized but is believed to involve domains DI/S5-S6, DIV/S5-S6, as well as DIV/S3-S4 (9). Most importantly, however, toxin characterization is often limited to studies using whole-cell INa or binding studies on neuronal membranes where there are mixed populations of NaV channel subtypes. For all of these toxins, the precise pattern of NaV channel subtype selectivity is either unknown or at best is incomplete.Recently, it was found that receptor site-3 was also recognized by a 43-residue spider toxin, originally named Magi 4, from the hexathelid spider Macrothele gigas (Iriomote, Japan). It binds with high affinity to insect NaV channels but, similar to scorpion α-like toxins, does not compete for the related site-3 in rat brain synaptosomes, despite being lethal by intracranial injection (10). Magi 4 shares significant homology to four δ-hexatoxin (HXTX)-1 family peptides and δ-actinopoditoxin-Mb1a (formerly δ-missulenatoxin-Mb1a; Fig. 1) but no sequence homology to scorpion α-toxins. Neurochemical studies have shown that δ-HXTX-1 toxins compete at nanomolar concentrations with both anti-mammalian (e.g. Aah2 and Lqh2) and anti-insect (e.g. LqhαIT) scorpion toxins for site-3 (1113). The three-dimensional structures of δ-HXTX-Ar1a and δ-HXTX-Hv1a peptides have been determined (14, 15) and possess core β regions stabilized by four disulfide bonds, placing them in the inhibitory cystine knot (ICK) structural family (16).Open in a separate windowFIGURE 1.Primary and secondary structure of δ-HXTX-Mg1a. A, comparison of the primary sequence of δ-HXTX-Mg1a and δ-HXTX-Mg1b (formerly Magi 14) with currently known members of the δ-HXTX-1 family and δ-AOTX-Mb1a (δ-actinopoditoxin-Mb1a, formerly δ-missulenatoxin-Mb1a). Homologies are shown relative to δ-HXTX-Mg1a; identities are boxed in gray, and conservative substitutions are in gray italic text. Gaps (dashes) have been inserted to maximize alignment. The disulfide bonding pattern for the strictly conserved cysteine residues determined for δ-HXTX-Mg1a (this study), δ-HXTX-Ar1a (55), and δ-HXTX-Hv1a (15) is indicated above the sequences; it is assumed that δ-AOTX-Mb1a (36), δ-HXTX-Hs20.1a (8), and δ-HXTX-Hv1b (56) have the same disulfide bonding pattern. The percentage identity and homology with δ-HXTX-Mg1a is shown to the right of the sequences. B, summary of δ-HXTX-Mg1a NMR data. Sequential NOEs, classified as very weak, weak, medium, and strong, are represented by the thickness of bars. Filled diamonds indicate backbone amide protons that form hydrogen bonds. 3JNHCα coupling constants are indicated by ↑ (>8 Hz) and ↓ (<5.5 Hz). Secondary structure is shown at the bottom of the figure where rectangles represent β-turns (the type of turn is indicated in the rectangle) and arrows represent β-sheets.The aim of this study was to first determine the solution structure of Magi 4 and second to investigate the ability of Magi 4 to discriminate between different NaV channels subtypes. Here we report the tertiary structure of Magi 4 by 1H NMR and show its disulfide bonding pattern and three-dimensional structure are homologous to δ-HXTX-1 toxins. We highlight the key residues in Magi 4 that appear to be topologically similar to those residues known to be part of the pharmacophore for site-3 scorpion α-toxins, despite Magi 4 having a different overall structure to scorpion α-toxins (11). In addition, we provide a detailed characterization of the selectivity and mode of action of Magi 4 on nine cloned mammalian and insect NaV channel subtypes, including a detailed characterization on insect neurotransmission. Given that the toxin potently slows the inactivation of NaV channels, it should be renamed δ-hexatoxin-Mg1a (δ-HXTX-Mg1a) in accordance with the rational nomenclature recently proposed for naming spider peptide toxins (7) (see ArachnoServer spider toxin data base).  相似文献   
77.
78.
The GC content is highly variable among the genomes of different organisms. It has been shown that recombinant gene expression in mammalian cells is much more efficient when GC‐rich coding sequences of a certain protein are used. In order to study protein–protein interactions in Varicella zoster virus, a GC‐low herpesvirus, we have developed a novel luminescence‐based maltose‐binding protein pull‐down interaction screening system (LuMPIS) that is able to overcome the impaired protein expression levels of GC‐low ORFs in mammalian expression systems.  相似文献   
79.

Background

Early diagnosis of dengue can assist patient triage and management and prevent unnecessary treatments and interventions. Commercially available assays that detect the dengue virus protein NS1 in the plasma/serum of patients offers the possibility of early and rapid diagnosis.

Methodology/Principal Findings

The sensitivity and specificity of the Pan-E Dengue Early ELISA and the Platelia™ Dengue NS1 Ag assays were compared against a reference diagnosis in 1385 patients in 6 countries in Asia and the Americas. Platelia was more sensitive (66%) than Pan-E (52%) in confirmed dengue cases. Sensitivity varied by geographic region, with both assays generally being more sensitive in patients from SE Asia than the Americas. Both kits were more sensitive for specimens collected within the first few days of illness onset relative to later time points. Pan-E and Platelia were both 100% specific in febrile patients without evidence of acute dengue. In patients with other confirmed diagnoses and healthy blood donors, Platelia was more specific (100%) than Pan-E (90%). For Platelia, when either the NS1 test or the IgM test on the acute sample was positive, the sensitivity versus the reference result was 82% in samples collected in the first four days of fever. NS1 sensitivity was not associated to disease severity (DF or DHF) in the Platelia test, whereas a trend for higher sensitivity in DHF cases was seen in the Pan-E test (however combined with lower overall sensitivity).

Conclusions/Significance

Collectively, this multi-country study suggests that the best performing NS1 assay (Platelia) had moderate sensitivity (median 64%, range 34–76%) and high specificity (100%) for the diagnosis of dengue. The poor sensitivity of the evaluated assays in some geographical regions suggests further assessments are needed. The combination of NS1 and IgM detection in samples collected in the first few days of fever increased the overall dengue diagnostic sensitivity.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号