首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   14篇
  50篇
  2014年   1篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
31.
The amino acid double labeling technique was used to identify and localize membrane-bound lactose operon proteins in E.coli. Both the “M” protein, thought to be the y gene product, and a polypeptide of MW ~15,000 appeared in the membrane following lac operon induction. The amounts of these two proteins were approximately equal.The inner and outer membrane layers of the cell envelope were separated by sucrose density gradient centrifugation or by selective solubilization of inner membranes with the detergent Sarkosyl. When gentle lysis conditions were employed to prepare membrane vesicles, both lac induced proteins fractionated with the inner membrane. However, the “M” protein was more easily randomized in the envelope structure by sonication than the 15,000 dalton component or an inner membrane marker enzyme.  相似文献   
32.
Sequence of an osmotically inducible lipoprotein gene.   总被引:8,自引:8,他引:8       下载免费PDF全文
The osmB gene of Escherichia coli, whose expression is induced by elevated osmolarity, was cloned and physically mapped to a 0.65-kilobase-pair NsiI-HincII DNA fragment at 28 min on E. coli chromosome. The OsmB protein was identified in minicells expressing the cloned gene. The nucleotide sequence of a 652-base-pair chromosomal DNA fragment containing the osmB gene was determined. The open reading frame encodes a 72-residue polypeptide with an Mr of 6,949. This reading frame was confirmed by sequencing the fusion joint of an osmB::TnphoA gene fusion. The amino-terminal amino acid sequence of the open reading frame is consistent with reported signal sequences of exported proteins. The sequence around the putative signal sequence cleavage site, Leu-Ser-Ala-Cys-Ser-Asn, is highly homologous to the consensus sequence surrounding the processing site of bacterial lipoproteins. The presence of a lipid moiety on the protein was confirmed by demonstrating the incorporation of radioactive palmitic acid and inhibition of processing by globomycin. Preliminary localization of the authentic OsmB protein was determined in minicells harboring a plasmid that carries the NsiI-HincII fragment; it was primarily in the outer membrane. Surprisingly, an osmB mutant carrying the osmB::TnphoA insertion mutation was more resistant to the inhibition of metabolism by high osmolarity than the parent strain was.  相似文献   
33.
34.
35.
Using mass-spectrometric measurements of 18O exchange from 13C18O2 we determined the activity of carbonic anhydrase (CA; EC 4.2.1.1) in chloroplast envelope membranes isolated from Chlamydomonas reinhardtii cw-15. Our results show an enrichment of CA activity in these fractions relative to the activity in the crude chloroplast. The envelope CA activity increased about 8-fold during the acclimation to low-CO2 conditions and was completely induced within the first 4 h after the transfer to air levels of CO2. The CA-activity was not dissociated from envelope membranes after salt treatment. In addition, no cross-reactivity with other CA isoenzymes of Chlamydomonas was observed in our chloroplast envelope membranes. All these observations indicated that the protein responsible for this activity was a new CA isoenzyme, which was an integral component of the chloroplast envelopes from Chlamydomonas. The catalytic properties of the envelope CA activity were completely different from those of the thylakoid isoenzyme, showing a high requirement for Mg2+ and a high sensitivity to ethoxyzolamide. Analysis of the integral envelope proteins showed that there were no detectable differences between high- and low-inorganic carbon (Ci) cells, suggesting that the new CA activity was constitutively expressed in both high- and low-Ci cells. Two different high-Ci-requiring mutants of C. reinhardtii, cia-3 and pmp-1, had a reduced envelope CA activity. We propose that this activity could play a role in the uptake of inorganic carbon at the chloroplast envelope membranes.  相似文献   
36.
Adaptation to osmotic stress alters the amounts of several specific proteins in the Escherichia coli K-12 envelope. The most striking feature of the response to elevated osmolarity was the strong induction of a periplasmic protein with an Mr of 31,000. This protein was absent in mutants with lambda plac Mu insertions in an osmotically inducible locus mapping near 58 min. The insertions are likely to be in proU, a locus encoding a transport activity for the osmoprotectants glycine betaine and proline. Factors affecting the extent of proU induction were identified by direct examination of periplasmic proteins on sodium dodecyl sulfate gels and by measuring beta-galactosidase activity from proU-lac fusions. Expression was stimulated by increasing additions of salt or sucrose to minimal medium, up to a maximum at 0.5 M NaCl. Exogenous glycine betaine acted as an osmoregulatory signal; its addition to the high-osmolarity medium substantially repressed the expression of the 31,000-dalton periplasmic protein and the proU-lac+ fusions. Elevated osmolarity also caused the appearance of a second periplasmic protein (Mr = 16,000), and severe reduction in the amounts of two others. In the outer membrane, the well-characterized repression of OmpF by high osmolarity was observed and was reversed by glycine betaine. Additional changes in membrane composition were also responsive to glycine betaine regulation.  相似文献   
37.
Affinity chromatography of -galactosidase fragments   总被引:2,自引:0,他引:2  
  相似文献   
38.
Beta-galactosidase. In vivo -complementation   总被引:3,自引:0,他引:3  
  相似文献   
39.
In the green alga Chlorella vulgaris UAM 101, a CO2-concentrating mechanism (CCM) is induced when cells are transferred from high (5%) to low (0.03%) CO2 concentrations. The induction of the CCM is correlated with de-novo synthesis of several polypeptides that remain to be identified. The internal carbonic anhydrase (CA; EC 4.2.1.1) activity increased 6- to 7-fold within 6 h of acclimation to air. When crude homogenates were further separated into soluble and insoluble fractions, nearly all of the CA activity was associated with the membrane fraction. Immunoblot analysis of cell homogenates probed with antibodies raised against the 37-kDa subunit of periplasmic CA of Chlamydomonas reinhardtii showed a cross-reaction with a single 38-kDa polypeptide in both high- and low-CO2-grown cells. The up-regulation of the expression of the 38-kDa polypeptide was closely correlated with the increase in internal CA activity. Furthermore, its subcellular location was also correlated with the distribution of the activity. Immunoblot analysis of pyrenoid fractions showed that the 38-kDa polypeptide was concentrated in the pyrenoids from low-CO2-grown cells but was not present in pyrenoids from high-CO2-grown cells. In addition, immunogold labeling experiments showed that the protein was mainly associated with membranes crossing the pyrenoid, while it was absent from the pyrenoid matrix. These studies have identified a putative intracellular CA polypeptide associated with the pyrenoid in Chlorella vulgaris, suggesting that this structure may play an important role in the operation of the CCM and the acclimation to low CO2 conditions. Received: 16 July 1997 / Accepted: 26 April 1998  相似文献   
40.
In Chlamydomonas reinhardtii the formation of a starch sheath surrounding the pyrenoid is observed when cells grown under high CO2 (5% CO2 in air) are transferred to low CO2 (0.03%) conditions. Formation of the starch sheath occurs coincidentally with induction of the CO2 concentrating mechanism and with de novo synthesis of 5 polypeptides with molecular masses of 21, 36, 37, 42–44 kDa. We studied the effect of CO2 concentrations on photosynthesis, ultrastructure and protein synthesis in Chlamydomonas reinhardtii cw-15 (wild phenotype for photosynthesis) and in the starch-less mutant BAFJ -6, with the aim to clarify the role of the pyrenoid starch sheath in the operation of the CO2 concentrating mechanism and whether these low CO2-inducible polypeptides are involved in the formation of starch sheath. When wild type and starch-less mutant cells were transferred from high to low CO2, the CO2 requirement for half-maximal rates of photosynthesis decreased from 40 μM to 2 μM CO2. 35SO42- labeling analyses showed that the starch-less mutant induced the 5 low CO2-inducible polypeptides. These observations suggest that the starch-less mutant was able to induce a fully active CO2 concentrating mechanism. Since the starch-less mutant did not form a pyrenoid starch sheath, we suggest that the starch sheath is not involved in the operation of the CO2 concentrating mechanism and that none of these 5 low CO2-inducible proteins is involved in the formation of the starch sheath in Chlamydomonas .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号