首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   29篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   6篇
  2017年   6篇
  2016年   5篇
  2015年   11篇
  2014年   4篇
  2013年   13篇
  2012年   13篇
  2011年   6篇
  2010年   13篇
  2009年   14篇
  2008年   15篇
  2007年   12篇
  2006年   16篇
  2005年   10篇
  2004年   18篇
  2003年   13篇
  2002年   9篇
  2001年   8篇
  2000年   17篇
  1999年   10篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1992年   9篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   8篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1971年   2篇
排序方式: 共有303条查询结果,搜索用时 31 毫秒
71.
We have compared the capacity of the large fragment of E. coli DNA polymerase I and highly purified DNA polymerases alpha from either Drosophila melanogaster embryos or calf thymus to replicate single-stranded M13 mp10 DNA treated with the antitumoral drug cis-diamminedichloroplatinum(II) (cis-DDP). We report that: a) although prokaryotic and eukaryotic enzymes have different structural complexity and dissimilar in vivo functions, their synthesis was blocked in vitro at similar sites on cis-DDP treated DNA; b) this inhibition occurred not only at d(G)n sequences, as previously reported for E. coli DNA polymerase I, (Pinto & Lippard (1985) Proc. Natl. Acad. Sci. USA, 82, 4616-4619) but also at other sequences which may represent putative cis-DDP-DNA adducts.  相似文献   
72.
Reaction of cis-diamminedichloroplatinum (II) with single-stranded M13 phage DNA in vitro produced monofunctional platinum-DNA adducts on guanine and bifunctional lesions with either two guanine bases (GG) or one adenine and one guanine (AG). When DNA containing a majority of monofunctional platinum-DNA lesions was dialyzed against 10 mM NaCIO4 at 37 degrees C, conversion of monoadducts to bifunctional lesions was observed. We examined the effect of post-treatment formation of bifunctional lesions on DNA synthesis by Escherichia coli DNA polymerase I and highly purified eukaryotic DNA polymerase alpha from Drosophila melanogaster and calf thymus. Arrest sites on the platinated template were determined by polyacrylamide gel electrophoresis. Monofunctional lesions did not appear to block DNA synthesis. Inhibition of replication increased as bifunctional platinum-DNA lesions formed during post-treatment incubation; GG adducts inhibited replication more than AG. These results suggest that bifunctional GG platinum-DNA adducts may be the major toxic damage of cisplatin.  相似文献   
73.
Many sugars and derivatives were tested in the capillary assay for their attraction of Bacillus subtilis. The major attractants were 2-deoxy-D-glucose, D-fructose, gentiobiose, D-glucose, maltose, D-mannitol, D-mannose, N-acetylglucosamine, alpha-methyl-D-glucoside, beta-methyl-D-glucoside, N-acetylmannosamine, alpha-methyl-D-mannoside, D-sorbitol, L-sorbose, sucrose, trehalose and D-xylose. Only glucose chemotaxis was completely constitutive. Competition experiments were carried out to determine the specificities of chemoreceptors. There were 25 instances of no influence of two sugars on each other's taxis, 92 instances of one sugar interfering non-reciprocally with chemotaxis towards another and 49 instances of two sugars reciprocally competing. However, in most of the last instances, other sugars were identified that interfered with chemotaxis towards one member of the pair but not the other. Thus, nearly all sugars and related compounds appear to be detected by their own chemoreceptors, but many secondary interactions exist.  相似文献   
74.
75.
A series of 60 gastric endocrine tumors comprised 44 body-fundus argyrophil carcinoids, of which 23 arose in a background of hypergastrinemia and type A chronic atrophic gastritis (A-CAG), mainly with histologic patterns suggestive of an autoimmune process. Only 22 percent (compared with 19 percent of 58 tumor-free A-CAG cases) of 36 carcinoids and 21 percent of 19 A-CAG carcinoids investigated had Helicobacter pylori (HP) colonization, against 50 percent of 14 CAG-associated neuroendocrine carcinomas or mixed endocrine-exocrine tumors, 84 percent of 150 cases with early gastric cancer (p < 0.001 versus carcinoids), mostly with B- or AB-type CAG, 76 percent of 97 tumor-free AB-CAG, and 95 percent of 151 tumor-free B-CAG cases. Secondary hypergastrinemia and local mechanisms activated by chronic autoimmune gastritis are among factors involved in the pathogenesis of relatively indolent CAG-associated carcinoids, whereas active HP gastritis in cooperation with environmental carcinogens may likely cause more severe epithelial transformation, leading to ordinary cancer and, possibly, to neuroendocrine carcinomas or mixed endocrine-exocrine tumors.  相似文献   
76.
Abasic (AP) sites are very frequent and dangerous DNA lesions. Their ability to block the advancement of a replication fork has been always viewed as a consequence of their inhibitory effect on the DNA synthetic activity of replicative DNA polymerases (DNA pols). Here we show that AP sites can also affect the strand displacement activity of the lagging strand DNA pol δ, thus preventing proper Okazaki fragment maturation. This block can be overcome through a polymerase switch, involving the combined physical and functional interaction of DNA pol β and Flap endonuclease 1. Our data identify a previously unnoticed deleterious effect of the AP site lesion on normal cell metabolism and suggest the existence of a novel repair pathway that might be important in preventing replication fork stalling.Loss of purine and pyrimidine bases is a significant source of DNA damage in prokaryotic and eukaryotic organisms. Abasic (apurinic and apyrimidinic) lesions occur spontaneously in DNA; in eukaryotes it has been estimated that about 104 depurination and 102 depyrimidation events occur per genome per day. An equally important source of abasic DNA lesions results from the action of DNA glycosylases, such as uracil glycosylase, which excises uracil arising primarily from spontaneous deamination of cytosines (1). Although most AP sites are removed by the base excision repair (BER)5 pathway, a small fraction of lesions persists, and DNA with AP lesions presents a strong block to DNA synthesis by replicative DNA polymerases (DNA pols) (2, 3). Several studies have been performed to address the effects of AP sites on the template DNA strand on the synthetic activity of a variety of DNA pols. The major replicative enzyme of eukaryotic cells, DNA pol δ, was shown to be able to bypass an AP lesion, but only in the presence of the auxiliary factor proliferating cell nuclear antigen (PCNA) and at a very reduced catalytic efficiency if compared with an undamaged DNA template (4). On the other hand, the family X DNA pols β and λ were shown to bypass an AP site but in a very mutagenic way (5). Recent genetic evidence in Saccharomyces cerevisiae cells showed that DNA pol δ is the enzyme replicating the lagging strand (6). According to the current model for Okazaki fragment synthesis (79), the action of DNA pol δ is not only critical for the extension of the newly synthesized Okazaki fragment but also for the displacement of an RNA/DNA segment of about 30 nucleotides on the pre-existing downstream Okazaki fragment to create an intermediate Flap structure that is the target for the subsequent action of the Dna2 endonuclease and the Flap endonuclease 1 (Fen-1). This process has the advantage of removing the entire RNA/DNA hybrid fragment synthesized by the DNA pol α/primase, potentially containing nucleotide misincorporations caused by the lack of a proofreading exonuclease activity of DNA pol α/primase. This results in a more accurate copy synthesized by DNA pol δ. The intrinsic strand displacement activity of DNA pol δ, in conjunction with Fen-1, PCNA, and replication protein A (RP-A), has been also proposed to be essential for the S phase-specific long patch BER pathway (10, 11). Although it is clear that an AP site on the template strand is a strong block for DNA pol δ-dependent synthesis on single-stranded DNA, the functional consequences of such a lesion on the ability of DNA pol δ to carry on strand displacement synthesis have never been investigated so far. Given the high frequency of spontaneous hydrolysis and/or cytidine deamination events, any detrimental effect of an AP site on the strand displacement activity of DNA pol δ might have important consequences both for lagging strand DNA synthesis and for long patch BER. In this work, we addressed this issue by constructing a series of synthetic gapped DNA templates with a single AP site at different positions with respect to the downstream primer to be displaced by DNA pol δ (see Fig. 1A). We show that an AP site immediately upstream of a single- to double-strand DNA junction constitutes a strong block to the strand displacement activity of DNA pol δ, even in the presence of RP-A and PCNA. Such a block could be resolved only through a “polymerase switch” involving the concerted physical and functional interaction of DNA pol β and Fen-1. The closely related DNA pol λ could only partially substitute for DNA pol β. Based on our data, we propose that stalling of a replication fork by an AP site not only is a consequence of its ability to inhibit nucleotide incorporation by the replicative DNA pols but can also stem from its effects on strand displacement during Okazaki fragment maturation. In summary, our data suggest the existence of a novel repair pathway that might be important in preventing replication fork stalling and identify a previously unnoticed deleterious effect of the AP site lesion on normal cell metabolism.Open in a separate windowFIGURE 1.An abasic site immediately upstream of a double-stranded DNA region inhibits the strand displacement activity of DNA polymerase δ. The reactions were performed as described under “Experimental Procedures.” A, schematic representation of the various DNA templates used. The size of the resulting gaps is indicated in nt. The position of the AP site on the 100-mer template strand is indicated relative to the 3′ end. Base pairs in the vicinity of the lesion are indicated by dashes. The size of the gaps (35–38 nt) is consistent with the size of ssDNA covered by a single RP-A molecule, which has to be released during Okazaki fragment synthesis when the DNA pol is approaching the 5′-end of the downstream fragment. When the AP site is covered by the downstream terminator oligonucleotide (Gap-3 and Gap-1 templates) the nucleotide placed on the opposite strand is C to mimic the situation generated by spontaneous loss of a guanine or excision of an oxidized guanine, whereas when the AP site is covered by the primer (nicked AP template), the nucleotide placed on the opposite strand is A to mimic the most frequent incorporation event occurring opposite an AP site. B, human PCNA was titrated in the presence of 15 nm (lanes 2–4 and 10–12) or 30 nm (lanes 6–8 and 14–16) recombinant human four subunit DNA pol δ, on a linear control (lanes 1–8) or a 38-nt gap control (lanes 9–16) template. Lanes 1, 5, 9, and 13, control reactions in the absence of PCNA. C, human PCNA was titrated in the presence of 60 nm DNA pol δ, on a linear AP (lanes 2–4) or 38-nt gap AP (lanes 6–9) template. Lanes 1 and 5, control reactions in the absence of PCNA.  相似文献   
77.
Analysis of the secondary metabolites content of the brown alga Dictyota ciliolata, collected from Oualidia lagoon (Morocco), revealed the presence of xenicane and guaiane homologous diterpenes. Two new xenicanes, 1 and 2, co-occurring with the known dictyodial, dictyol C and dictyol H, have been isolated and characterized by spectral methods, mainly by NMR techniques. Compound 2 displayed mild antifungal activity against Candida albicans.  相似文献   
78.

Background and Aims

The familial Mediterranean fever (FMF) gene (MEFV) encodes pyrin, a major regulator of the inflammasome platform controlling caspase-1 activation and IL-1β processing. Pyrin has been shown to interact with the gene product of NLRP3, NALP3/cryopyrin, also an important active member of the inflammasome. The NLRP3 region was recently reported to be associated with Crohn''s disease (CD) susceptibility. We therefore sought to evaluate MEFV as an inflammatory bowel disease (IBD) susceptibility gene.

Methodology and Results

MEFV colonic mucosal gene expression was significantly increased in experimental colitis mice models (TNBS p<0.0003; DSS p<0.006), in biopsies from CD (p<0.02) and severe ulcerative colitis (UC) patients (p<0.008). Comprehensive genetic screening of the MEFV region in the Belgian exploratory sample set (440 CD trios, 137 UC trios, 239 CD cases, 96 UC cases, and 107 healthy controls) identified SNPs located in the MEFV 5′ haplotype block that were significantly associated with UC (rs224217; p = 0.003; A allele frequency: 56% cases, 45% controls), while no CD associations were observed. Sequencing and subsequent genotyping of variants located in this associated haplotype block identified three synonymous variants (D102D/rs224225, G138G/rs224224, A165A/rs224223) and one non-synonymous variant (R202Q/rs224222) located in MEFV exon 2 that were significantly associated with UC (rs224222: p = 0.0005; A allele frequency: 32% in cases, 23% in controls). No consistent associations were observed in additional Canadian (256 CD trios, 91 UC trios) and Scottish (495 UC, 370 controls) sample sets. We note that rs224222 showed marginal association (p = 0.012; G allele frequency: 82% in cases, 70% in controls) in the Canadian sample, but with a different risk allele. None of the NLRP3 common variants were associated with UC in the Belgian-Canadian UC samples and no significant interactions were observed between NLRP3 and MEFV that could explain the observed flip-flop of the rs224222 risk allele.

Conclusion

The differences in association levels observed between the sample sets may be a consequence of distinct founder effects or of the relative small sample size of the cohorts evaluated in this study. However, the results suggest that common variants in the MEFV region do not contribute to CD and UC susceptibility.  相似文献   
79.
80.
Halobacterial representatives were isolated from salted fish, naturally occurring salt pans as well as artificial saline poolsin the Mediterranean area. The isolation techniques experimented proved successful, allowing halophilic archaea to be retrieved iralmost 72% of analysed samples. About 65% of strains could be presumptively ascribed to the speciellaloarcula marismortui by RFLP (Restriction Fragment Length Polymorphism) grouping and 16S rRNA gene sequence comparison. Nevertheless, cluster analysis of RAPD-PCR patterns revealed a wide heterogeneity among isolated strains. Biochemical features of technological interest, such as proteclic, lipolytic and decarboxylase activity, were investigated in order to elucidate the role of archaea during ripening of salted anchovies. Proteolytic activity was only evidenced on the sarcoplasmic fraction extracted from fresh anchovies and for only 4 strains out of 2 No strain revealed either lipolytic capability on cod liver oil or proteolytic activity on fresh anchovies myofibrillar extract. Finally, only one strain exhibited decarboxylase activity, minimizing the potential responsibility of cultivable archaea microflora in the spoilage of salted anchovies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号