首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   14篇
  2021年   1篇
  2020年   2篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2014年   6篇
  2013年   7篇
  2012年   4篇
  2011年   5篇
  2010年   3篇
  2009年   10篇
  2008年   12篇
  2007年   13篇
  2006年   11篇
  2005年   5篇
  2004年   10篇
  2003年   6篇
  2002年   8篇
  2001年   11篇
  2000年   6篇
  1999年   11篇
  1998年   10篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   2篇
  1993年   5篇
  1992年   11篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1965年   2篇
排序方式: 共有223条查询结果,搜索用时 343 毫秒
11.
To select a Saccharomyces cerevisiae reference strain amenable to experimental techniques used in (molecular) genetic, physiological and biochemical engineering research, a variety of properties were studied in four diploid, prototrophic laboratory strains. The following parameters were investigated: 1) maximum specific growth rate in shake-flask cultures; 2) biomass yields on glucose during growth on defined media in batch cultures and steady-state chemostat cultures under controlled conditions with respect to pH and dissolved oxygen concentration; 3) the critical specific growth rate above which aerobic fermentation becomes apparent in glucose-limited accelerostat cultures; 4) sporulation and mating efficiency; and 5) transformation efficiency via the lithium-acetate, bicine, and electroporation methods. On the basis of physiological as well as genetic properties, strains from the CEN.PK family were selected as a platform for cell-factory research on the stoichiometry and kinetics of growth and product formation.  相似文献   
12.
Regulation of fermentative capacity was studied in chemostat cultures of two Saccharomyces cerevisiae strains: the laboratory strain CEN.PK113-7D and the industrial bakers’ yeast strain DS28911. The two strains were cultivated at a fixed dilution rate of 0.10 h−1 under various nutrient limitation regimes: aerobic and anaerobic glucose limitation, aerobic and anaerobic nitrogen limitation on glucose, and aerobic ethanol limitation. Also the effect of specific growth rate on fermentative capacity was compared in glucose-limited, aerobic cultures grown at dilution rates between 0.05 h−1 and 0.40 h−1. Biomass yields and metabolite formation patterns were identical for the two strains under all cultivation conditions tested. However, the way in which environmental conditions affected fermentative capacity (assayed off-line as ethanol production rate under anaerobic conditions) differed for the two strains. A different regulation of fermentative capacity in the two strains was also evident from the levels of the glycolytic enzymes, as determined by in vitro enzyme assays. With the exception of phosphofructokinase and pyruvate decarboxylase in the industrial strain, no clear-cut correlation between the activities of glycolytic enzymes and the fermentative capacity was found. These results emphasise the need for controlled cultivation conditions in studies on metabolic regulation in S. cerevisiae and demonstrate that conclusions from physiological studies cannot necessarily be extrapolated from one S. cerevisiae strain to the other.  相似文献   
13.
14.
Patients with treated HIV-1-infection experience earlier occurrence of aging-associated diseases, raising speculation that HIV-1-infection, or antiretroviral treatment, may accelerate aging. We recently described an age-related co-methylation module comprised of hundreds of CpGs; however, it is unknown whether aging and HIV-1-infection exert negative health effects through similar, or disparate, mechanisms. We investigated whether HIV-1-infection would induce age-associated methylation changes. We evaluated DNA methylation levels at >450,000 CpG sites in peripheral blood mononuclear cells (PBMC) of young (20-35) and older (36-56) adults in two separate groups of participants. Each age group for each data set consisted of 12 HIV-1-infected and 12 age-matched HIV-1-uninfected samples for a total of 96 samples. The effects of age and HIV-1 infection on methylation at each CpG revealed a strong correlation of 0.49, p<1 x10-200 and 0.47, p<1x10-200. Weighted gene correlation network analysis (WGCNA) identified 17 co-methylation modules; module 3 (ME3) was significantly correlated with age (cor=0.70) and HIV-1 status (cor=0.31). Older HIV-1+ individuals had a greater number of hypermethylated CpGs across ME3 (p=0.015). In a multivariate model, ME3 was significantly associated with age and HIV status (Data set 1: βage= 0.007088, p=2.08 x 10-9; βHIV= 0.099574, p=0.0011; Data set 2: βage= 0.008762, p=1.27x 10-5; βHIV= 0.128649, p= 0.0001). Using this model, we estimate that HIV-1 infection accelerates age-related methylation by approximately 13.7 years in data set 1 and 14.7 years in data set 2. The genes related to CpGs in ME3 are enriched for polycomb group target genes known to be involved in cell renewal and aging. The overlap between ME3 and an aging methylation module found in solid tissues is also highly significant (Fisher-exact p=5.6 x 10-6, odds ratio=1.91). These data demonstrate that HIV-1 infection is associated with methylation patterns that are similar to age-associated patterns and suggest that general aging and HIV-1 related aging work through some common cellular and molecular mechanisms. These results are an important first step for finding potential therapeutic targets and novel clinical approaches to mitigate the detrimental effects of both HIV-1-infection and aging.  相似文献   
15.
The Alphavirus Sindbis 6K protein is involved in several functions. It contributes to the processing and membrane insertion of E1 and PE2 viral envelope glycoproteins and to virus budding. It also permeabilizes Escherichia coli and mammalian cells. These viroporin-like properties have been proposed to help virus budding by modifying membrane permeabilities. We expressed Sindbis virus 6K cRNA in Xenopus oocytes to further characterize the effect of 6K on membrane conductances and permeabilization. Although no intrinsic channel properties were seen, cell shrinkage was observed within 24 h. Voltage-clamp experiments showed that 6K upregulated endogenous currents: a hyperpolarization-activated inward current (I in) and a calcium-dependent chloride current (I Cl). 6K was located at both the plasma and the endoplasmic reticulum membranes. The plasma membrane current upregulation likely results from disruption of the calcium homeostasis of the cell at the endoplasmic reticulum level. Indeed, 6K cRNA expression induced reticular calcium store depletion and capacitative calcium entry activation. By experimental modifications of the incubation medium, we showed that downstream of these events cell shrinkage resulted from a 6K -induced KCl efflux (I Cl upregulation leads to chloride efflux, which itself electrically drives potassium efflux), which was responsible for an osmotic water efflux. Our data confirm that 6K specifically triggers a sequential cascade of events that leads to cytoplasmic calcium elevation and cell permeabilization, which likely play a role in the Sindbis virus life cycle.  相似文献   
16.
The mammalian ortholog of the conserved Drosophila adaptor protein Numb (Nb) and its homolog Numblike (Nbl) modulate neuronal cell fate determination at least in part by antagonizing Notch signaling. Because the Notch pathway has been implicated in regulating hemopoietic stem cell self-renewal and T cell fate specification in mammals, we investigated the role of Nb and Nbl in hemopoiesis using conditional gene targeting. Surprisingly simultaneous deletion of both Nb and Nbl in murine bone marrow precursors did not affect the ability of stem cells to self-renew or to give rise to differentiated myeloid or lymphoid progeny, even under competitive conditions in mixed chimeras. Furthermore, T cell fate specification and intrathymic T cell development were unaffected in the combined absence of Nb and Nbl. Collectively our data indicate that the Nb family of adaptor proteins is dispensable for hemopoiesis and lymphopoiesis in mice, despite their proposed role in neuronal stem cell development.  相似文献   
17.
VIP (vasoactive intestinal peptide) neuropeptide has long been considered to be putative regulator of testicular functions.In vitro evidence suggests that VIP could play an important role in testosterone biosynthesis. However, the endogenous role of VIP on testicular functions remained to be demonstrated. In C57BL/6 mice exhibiting complete disruption of the VIP gene, the authors observed that male fertility remained intact but serum testosterone levels were lower than those of WT littermates. At the age of 4 months, this phenotype was accompanied by reduced steroidogenesis due to inhibition of the expression of StAR (steroidogenic acute regulatory protein) and 3ßHSD (3ß-hydroxysteroid dehydrogenase) in the testis. In addition, serum levels of FSH (Follicle-stimulating hormone) but not LH (Luteinizing hormone) were reduced in young KO males. Testicular anatomy also revealed a subtle but significantly higher percentage of degenerated seminiferous tubules in 4-month-old VIP-/-animals compared to WT. In aging animals (15 months old), control males showed typical testicular aging including severe degeneration of seminiferous tubules, a dramatic decrease in serum testosterone levels and a reduction in StAR and 3ß-HSD gene expression. In age-matched VIP-/-males, serum levels of testosterone and steroidogenic enzymes were still very low. Interestingly, in contrast with young mice, testicular degeneration at 15 months was significantly less severe marked in VIP-/-mice than in WT mice. Altogether, these results suggest that: 1) VIP is an important factor for regulating testosterone biosynthesis and FSH secretion and 2) VIP regulates testicular aging.  相似文献   
18.
Bacillus cereus is believed to be a soil bacterium, but studied solely in laboratory culture media. The aim of this study was to assess the physiology of B. cereus growing on soil organic matter by a proteomic approach. Cells were cultured to mid-exponential phase in soil extracted solubilized organic matter (SESOM), which mimics the nutrient composition of soil, and in Luria-Bertani broth as control. Silver staining of the two-dimensional gels revealed 234 proteins spots up-regulated when cells were growing in SESOM, with 201 protein spots down-regulated. Forty-three of these differentially expressed proteins were detected by Colloidal Coomassie staining and identified by matrix assisted laser desorption ionization-time of flight MS of tryptic digests. These differentially expressed proteins covered a range of functions, primarily amino acid, lipid, carbohydrate and nucleic acid metabolism. These results suggested growth on soil-associated carbohydrates, fatty acids and/or amino acids, concomitant with shifts in cellular structure.  相似文献   
19.
Hydrogen is a promising alternative as an energetic carrier and its production by dark fermentation from wastewater has been recently proposed, with special attention to crude glycerol as potential substrate. In this study, two different feeding strategies were evaluated for replacing the glucose substrate by glycerol substrate: a one-step strategy (glucose was replaced abruptly by glycerol) and a step-by-step strategy (progressive decrease of glucose concentration and increase of glycerol concentration from 0 to 5 g L?1), in a continuous stirred tank reactor (12 h of hydraulic retention time (HRT), pH 5.5, 35 °C). While the one-step strategy led to biomass washout and unsuccessful H2 production, the step-by-step strategy was efficient for biomass adaptation, reaching acceptable hydrogen yields (0.4?±?0.1 molH2?mol?1 glycerol consumed) around 33 % of the theoretical yield independently of the glycerol concentration. Microbial community structure was investigated by single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) fingerprinting techniques, targeting either the total community (16S ribosomal RNA (rRNA) gene) or the functional Clostridium population involved in H2 production (hydA gene), as well as by 454 pyrosequencing of the total community. Multivariate analysis of fingerprinting and pyrosequencing results revealed the influence of the feeding strategy on the bacterial community structure and suggested the progressive structural adaptation of the community to increasing glycerol concentrations, through the emergence and selection of specific species, highly correlated to environmental parameters. Particularly, this work highlighted an interesting shift of dominant community members (putatively responsible of hydrogen production in the continuous stirred tank reactor (CSTR)) according to the gradient of glycerol proportion in the feed, from the family Veillonellaceae to the genera Prevotella and Clostridium sp., putatively responsible of hydrogen production in the CSTR.  相似文献   
20.

Background

The number of biotransformations that use nicotinamide recycling systems is exponentially growing. For this reason one of the current challenges in biocatalysis is to develop and optimize more simple and efficient cofactor recycling systems. One promising approach to regenerate NAD+ pools is the use of NADH-oxidases that reduce oxygen to hydrogen peroxide while oxidizing NADH to NAD+. This class of enzymes may be applied to asymmetric reduction of prochiral substrates in order to obtain enantiopure compounds.

Results

The NADH-oxidase (NOX) presented here is a flavoenzyme which needs exogenous FAD or FMN to reach its maximum velocity. Interestingly, this enzyme is 6-fold hyperactivated by incubation at high temperatures (80°C) under limiting concentrations of flavin cofactor, a change that remains stable even at low temperatures (37°C). The hyperactivated form presented a high specific activity (37.5 U/mg) at low temperatures despite isolation from a thermophile source. Immobilization of NOX onto agarose activated with glyoxyl groups yielded the most stable enzyme preparation (6-fold more stable than the hyperactivated soluble enzyme). The immobilized derivative was able to be reactivated under physiological conditions after inactivation by high solvent concentrations. The inactivation/reactivation cycle could be repeated at least three times, recovering full NOX activity in all cases after the reactivation step. This immobilized catalyst is presented as a recycling partner for a thermophile alcohol dehydrogenase in order to perform the kinetic resolution secondary alcohols.

Conclusion

We have designed, developed and characterized a heterogeneous and robust biocatalyst which has been used as recycling partner in the kinetic resolution of rac-1-phenylethanol. The high stability along with its capability to be reactivated makes this biocatalyst highly re-useable for cofactor recycling in redox biotransformations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号