首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   22篇
  2024年   2篇
  2023年   3篇
  2022年   6篇
  2021年   12篇
  2020年   4篇
  2019年   8篇
  2018年   11篇
  2017年   11篇
  2016年   12篇
  2015年   19篇
  2014年   28篇
  2013年   21篇
  2012年   38篇
  2011年   26篇
  2010年   20篇
  2009年   14篇
  2008年   17篇
  2007年   21篇
  2006年   20篇
  2005年   12篇
  2004年   16篇
  2003年   8篇
  2002年   17篇
  2001年   7篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
  1960年   2篇
排序方式: 共有391条查询结果,搜索用时 15 毫秒
11.
Separation of the heterogeneous lignin macromolecule in fractions with increased homogeneity, as well as different structural (molar mass) and functional (hydroxy groups, ‐OH) features is important in terms of its use as a chemical building block. For this purpose, three thermal separation techniques were investigated and compared: solvent extraction, successive precipitation and ultrafiltration. One important issue in this context is the utilization of organic solvents with low boiling points to ensure a simple and efficient recovery. In addition to a softwood Kraft lignin (Indulin AT) as reference lignin, two sulfur‐free Organosolv lignins from short rotation coppice (“poplar with bark”) and from the energy grass Miscanthus × gigantheus were investigated. The lignins were separated into low, medium and high molecular weight fractions. Due to the different initial structural features and the associated varying solubility properties in such lignins, different organic solvents were needed for dissolution and precipitation of the individual lignin fractions. The polarity of the used solvent is one key factor regarding the yield of the soluble fraction and the success of molecular sorting into low, medium, and high molecular weight. Further structural features, for example the aliphatic OH‐group content increased with rising molecular weight of poplar, miscanthus, and Kraft lignin from minimum 0.72, 0.3, and 1.6 mmol/g to maximum 2.4, 1.6, and 2.8 mmol/g, respectively. The number of phenolic OH‐groups decreased from maximum 3.8, 4.3, and 4.2 to minimum 1.4, 2.7, and 2.9, respectively. The presented work illustrate options regarding the molecular sorting of several lignin types with three thermal techniques into fractions differing in key properties (yield, molecular weight, polydispersity, functional groups) for material applications.  相似文献   
12.

Nitrogen (N) inputs from atmospheric deposition can increase soil organic carbon (SOC) storage in temperate and boreal forests, thereby mitigating the adverse effects of anthropogenic CO2 emissions on global climate. However, direct evidence of N-induced SOC sequestration from low-dose, long-term N addition experiments (that is, addition of < 50 kg N ha−1 y−1 for > 10 years) is scarce worldwide and virtually absent for European temperate forests. Here, we examine how tree growth, fine roots, physicochemical soil properties as well as pools of SOC and soil total N responded to 20 years of regular, low-dose N addition in two European coniferous forests in Switzerland and Denmark. At the Swiss site, the addition of 22 kg N ha−1 y−1 (or 1.3 times throughfall deposition) stimulated tree growth, but decreased soil pH and exchangeable calcium. At the Danish site, the addition of 35 kg N ha−1 y−1 (1.5 times throughfall deposition) impaired tree growth, increased fine root biomass and led to an accumulation of N in several belowground pools. At both sites, elevated N inputs increased SOC pools in the moderately decomposed organic horizons, but decreased them in the mineral topsoil. Hence, long-term N addition led to a vertical redistribution of SOC pools, whereas overall SOC storage within 30 cm depth was unaffected. Our results imply that an N-induced shift of SOC from older, mineral-associated pools to younger, unprotected pools might foster the vulnerability of SOC in temperate coniferous forest soils.

  相似文献   
13.
14.
We have used laser temperature-jump to investigate the kinetics and mechanism of folding the 35 residue subdomain of the villin headpiece. The relaxation kinetics are biphasic with a sub-microsecond phase corresponding to a helix-coil transition and a slower microsecond phase corresponding to overall unfolding/refolding. At 300 K, the folding time is 4.3(+/-0.6) micros, making it the fastest folding, naturally occurring protein, with a rate close to the theoretical speed limit. This time is in remarkable agreement with the prediction of 5 (+11,-3) micros by Zagrovic et al. from atomistic molecular dynamics simulations using an implicit solvent model. We test their prediction that replacement of the C-terminal phenylalanine residue with alanine will increase the folding rate by removing a transient non-native interaction. We find that the alanine substitution has no effect on the folding rate or on the equilibrium constant. Implications of this result for the validity of the simulated folding mechanism are discussed.  相似文献   
15.
Growth hormone (GH) has been demonstrated to alter the behavior of juvenile salmonids. However, the mechanisms behind this action are not yet understood. In mammals and birds, peripheral GH treatment has been shown to affect monoaminergic activity in the central nervous system, which may be a mechanism whereby GH alters behavior. To investigate if GH may influence behavior directly at the central nervous system, juvenile rainbow trout were injected with GH into the third ventricle of the brain, whereupon physical activity and food intake were observed during 2 h. Thereafter, brains were sampled and the content of serotonin, dopamine, and noradrenaline and their metabolites were measured in hypothalamus, telencephalon, optic tectum, and brainstem. The GH-treated fish increased their swimming activity relative to sham-injected controls, while appetite remained unchanged, compared with sham-injected controls. Analysis of brain content of monoamines revealed that the GH treatment caused a decrease in the dopamine metabolite homovanillic acid in the hypothalamus, indicating a lowered dopaminergic activity. It is concluded that GH may alter behavior by acting directly on the central nervous system in juvenile rainbow trout. Furthermore, GH seems to alter the dopaminergic activity in the hypothalamus. Whether this is a mechanism whereby GH affects swimming activity remains to be clarified.  相似文献   
16.
Ubiquitination is a universal protein degradation pathway in which the molecules of 8.5-kDa proteolytic peptide ubiquitin are covalently attached to the epsilon-amino group of the substrate's lysine residues. Little is known about the importance of this highly conserved mechanism for protein recycling in mammalian gametogenesis and fertilization. The data obtained by the students and faculty of the international training course Window to the Zygote 2000 demonstrate the accumulation of ubiquitin-cross-reactive structures in the trophoblast, but not in the inner cell mass of the expanding bovine and mouse blastocysts. This observation suggests that a major burst of ubiquitin-dependent proteolysis occurs in the trophoblast of mammalian peri-implantation embryos. This event may be important for the success of blastocyst hatching, differentiation of embryonic stem cells into soma and germ line, and/or implantation in both naturally conceived and reconstructed mammalian embryos.  相似文献   
17.
18.
Meiotic maturation of mammalian oocytes (transition from prophase I to metaphase II) is accompanied by complex changes in the protein phosphorylation pattern. At least two major protein kinases are involved in these events; namely, cdc2 kinase and mitogen-activated protein (MAP) kinase, because the inhibition of these kinases arrest mammalian oocytes in the germinal vesicle (GV) stage. We show that during meiotic maturation of bovine oocytes, the translation initiation factor, eIF4E (the cap binding protein), gradually becomes phosphorylated. This substantial phosphorylation begins at the time of germinal vesicle breakdown (GVBD) and continues to the metaphase II stage. The onset of eIF4E phosphorylation occurs in parallel with a significant increase in overall protein synthesis. However, although eIF4E is nearly fully phosphorylated in metaphase II oocytes, protein synthesis reaches only basal levels at this stage, similar to that of prophase I oocytes, in which the factor remains unphosphorylated. We present evidence that a specific repressor of eIF4E, the binding protein 4E-BP1, is present and could be involved in preventing eIF4E function in metaphase II stage oocytes. Recently, two protein kinases, called Mnk1 and Mnk2, have been identified in somatic cells as eIF4E kinases, both of which are substrates of MAP kinase in vivo. In bovine oocytes, a specific inhibitor of cdk kinases, butyrolactone I, arrests oocytes in GV stage and prevents activation of both cdc2 and MAP kinase. Under these conditions, the phosphorylation of eIF4E is also blocked, and its function in initiation of translation is impaired. In contrast, PD 098059, a specific inhibitor of the MAP kinase activation pathway, which inhibits the MAP kinase kinase, called MEK function, leads only to a postponed GVBD, and a delay in MAP kinase and eIF4E phosphorylation. These results indicate that in bovine oocytes, 1) MAP kinase activation is only partially dependent on MEK kinase, 2) MAP kinase is involved in eIF4E phosphorylation, and 3) the abundance of fully phosphorylated eIF4E does not necessarily directly stimulate protein synthesis. A possible MEK kinase-independent pathway of MAP kinase phosphorylation and the role of 4E-BP1 in repressing translation in metaphase II oocytes are discussed.  相似文献   
19.
Disorder-relevant but task-unrelated stimuli impair cognitive performance in social anxiety disorder (SAD); however, time course and neural correlates of emotional interference are unknown. The present study investigated time course and neural basis of emotional interference in SAD using event-related functional magnetic resonance imaging (fMRI). Patients with SAD and healthy controls performed an emotional stroop task which allowed examining interference effects on the current and the succeeding trial. Reaction time data showed an emotional interference effect in the current trial, but not the succeeding trial, specifically in SAD. FMRI data showed greater activation in the left amygdala, bilateral insula, medial prefrontal cortex (mPFC), dorsal anterior cingulate cortex (ACC), and left opercular part of the inferior frontal gyrus during emotional interference of the current trial in SAD patients. Furthermore, we found a positive correlation between patients’ interference scores and activation in the mPFC, dorsal ACC and left angular/supramarginal gyrus. Taken together, results indicate a network of brain regions comprising amygdala, insula, mPFC, ACC, and areas strongly involved in language processing during the processing of task-unrelated threat in SAD. However, specifically the activation in mPFC, dorsal ACC, and left angular/supramarginal gyrus is associated with the strength of the interference effect, suggesting a cognitive network model of attentional bias in SAD. This probably comprises exceeded allocation of attentional resources to disorder-related information of the presented stimuli and increased self-referential and semantic processing of threat words in SAD.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号