首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1162篇
  免费   73篇
  1235篇
  2023年   7篇
  2022年   18篇
  2021年   31篇
  2020年   18篇
  2019年   20篇
  2018年   24篇
  2017年   34篇
  2016年   44篇
  2015年   49篇
  2014年   57篇
  2013年   84篇
  2012年   92篇
  2011年   83篇
  2010年   46篇
  2009年   44篇
  2008年   55篇
  2007年   61篇
  2006年   49篇
  2005年   60篇
  2004年   43篇
  2003年   54篇
  2002年   42篇
  2001年   10篇
  2000年   10篇
  1999年   9篇
  1998年   10篇
  1996年   5篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1988年   5篇
  1986年   4篇
  1984年   5篇
  1983年   4篇
  1976年   4篇
  1928年   3篇
  1926年   4篇
  1913年   8篇
  1912年   5篇
  1911年   3篇
  1910年   3篇
  1909年   4篇
  1908年   6篇
  1907年   4篇
  1904年   7篇
  1865年   5篇
  1860年   3篇
排序方式: 共有1235条查询结果,搜索用时 15 毫秒
71.
DNA interstrand cross-links are usually formed due to bidentate covalent or coordination binding of a cross-linking agent to nucleotides of different strands. However interstrand linkages can be also caused by any type of chemical modification that gives rise to a strong local stabilization of the double helix. These stabilized sites conserve their helical structure and prevent local and total strand separation at temperatures above the melting of ordinary AT and GC base pairs. This local stabilization makes DNA melting fully reversible and independent of strand concentration like ordinary covalent interstrand cross-links. The stabilization can be caused by all the types of chemical modifications (interstrand cross-links, intrastrand cross-links or monofunctional adducts) if they give rise to a strong enough local stabilization of the double helix. Our calculation demonstrates that an increase in stability by 25 to 30 kcal in the free energy of a single base pair of the double helix is sufficient for this "cross-linking effect" (i.e. conserving the helicity of this base pair and preventing strand separation after melting of ordinary base pairs). For the situation where there is more then one stabilized site in a DNA duplex (e.g., 1 stabilized site per 1000 bp), a lower stabilization per site is sufficient for the "cross-linking effect" (18 - 20 kcal). A substantial increase in DNA stability was found in various experimental studies for some metal-based anti-tumor compounds. These compounds may give rise to the effect described above. If ligand induced stabilization is distributed among several neighboring base pairs, a much lower minimum increase per stabilized base pair is sufficient to produce the cross-linking effect (1 bp- 24.4 kcal; 5 bp- 5.3 kcal; 10 bp- 2.9 kcal, 25 bp- 1.4 kcal; 50 bp- 1.0 kcal). The relatively weak non-covalent binding of histones or protamines that cover long regions of DNA (20- 40 bp) can also cause this effect if the salt concentration of the solution is sufficiently low to cause strong local stabilization of the double helix. Stretches of GC pairs more than 25 bp in length inserted into poly(AT) DNA also exhibit properties of stabilizing interstrand cross-links.  相似文献   
72.
The phylogeny of true bugs (Hemiptera: Heteroptera), one of the most diverse insect groups in terms of morphology and ecology, has been the focus of attention for decades with respect to several deep nodes between the suborders of Hemiptera and the infraorders of Heteroptera. Here, we assembled a phylogenomic data set of 53 taxa and 3102 orthologous genes to investigate the phylogeny of Hemiptera–Heteroptera, and both concatenation and coalescent methods were used. A binode-control approach for data filtering was introduced to reduce the incongruence between different genes, which can improve the performance of phylogenetic reconstruction. Both hypotheses (Coleorrhyncha + Heteroptera) and (Coleorrhyncha + Auchenorrhyncha) received support from various analyses, in which the former is more consistent with the morphological evidence. Based on a divergence time estimation performed on genes with a strong phylogenetic signal, the origin of true bugs was dated to 290–268 Ma in the Permian, the time in Earth's history with the highest concentration of atmospheric oxygen. During this time interval, at least 1007 apomorphic amino acids were retained in the common ancestor of the extant true bugs. These molecular apomorphies are located in 553 orthologous genes, which suggests the common ancestor of the extant true bugs may have experienced large-scale evolution at the genome level.  相似文献   
73.
74.

Objective

A central goal of health care is to improve patient outcomes. Although several studies have demonstrated the effectiveness of therapist guided internet-based cognitive behaviour therapy (ICBT) for social anxiety disorder (SAD), a significant proportion of patients do not respond to treatment. Consequently, the aim of this study was to identify individual characteristics and treatment program related factors that could help clinicians predict treatment outcomes and adherence for individuals with SAD.

Method

The sample comprised longitudinal data collected during a 4-year period of adult individuals (N = 764) treated for SAD at a public service psychiatric clinic. Weekly self-rated Liebowitz Social Anxiety Scale (LSAS-SR) scores were provided. Rates of symptomatic change during treatment and adherence levels were analysed using multilevel modelling. The following domains of prognostic variables were examined: (a) socio-demographic variables; (b) clinical characteristics; (c) family history of mental illness; and (d) treatment-related factors.

Results

Higher treatment credibility and adherence predicted a faster rate of improvement during treatment, whereas higher overall functioning level evidenced a slower rate of improvement. Treatment credibility was the strongest predictor of greater adherence. Having a family history of SAD-like symptoms was also associated with greater adherence, whereas Attention-Deficit/Hyperactivity Disorder (ADHD)-like symptoms, male gender, and family history of minor depression predicted lower adherence. Also, the amount of therapist time spent per treatment module was negatively associated with adherence.

Conclusions

Results from a large clinical sample indicate that the credibility of ICBT is the strongest prognostic factor explaining individual differences in both adherence level and symptomatic improvement. Early screening of ADHD-like symptoms may help clinicians identify patients who might need extra support or an adjusted treatment. Therapist behaviours that promote adherence may be important for treatment response, although more research is needed in order to determine what type of support would be most beneficial.  相似文献   
75.
Wild type gene for green fluorescent protein (GFP) was stably integrated into the Pichia pastoris genome and yielded an expression level of over 40% of total cellular protein. The high cytoplasmic concentration of fluorescent (properly folded and processed) GFP caused the formation of fluorescent spherical structures, which could be observed by fluorescence or confocal microscopy after controlled permeabilization of the yeast cells with 0.2% N-lauroyl sarcosine (NLS). Fluorescent GFP particles were also isolated after removal of the cell wall and found to be quite resistant to 0.2% N-lauroyl sarcosine. SDS-PAGE analysis of the isolated fluorescent particles revealed the presence of an 80 kDa protein (alcohol oxidase) and GFP (30%). We conclude that GFP is able to enter spontaneously into the peroxisomes and is inserted into densely packed layers of alcohol oxidase. Consequently, the formation of similar fluorescent particles can also be expected in other organisms when using high-level expression systems. As GFP is widely used in fusion with other proteins as a reporter for protein localization and for many other applications in biotechnology, care must be taken to avoid false interpretations of targeting or trafficking mechanisms inside the cells. In addition, when whole cells or cytoplasmic fractions are used for the quantitative determination of GFP levels, incorrect and misleading values of GFP could be obtained due to the formation of fluorescent particles containing material inside which is not available for fluorescence measurements.  相似文献   
76.
External and internal head structures of Coleorrhyncha, a key-taxon within the Hemiptera, are described in detail and documented using modern techniques. The main focus is on Hackeriella veitchi, but two additional representatives of the Gondwanan relict group were also examined, and also head structures of Enicocephalidae, a member of a potentially basal heteropteran lineage. Features were compared to those documented in literature for the Sternorrhyncha, Auchenorrhyncha, and Heteroptera. Coleorrhyncha are characterized by highly modified head structures and correspondingly an entire series of autapomorphies, such as for instance a strongly flattened head capsule with fenestrations. However, they also display features that are likely plesiomorphic compared to members of other hemipteran groups. These include the almost complete tentorium and the lack of the gula. The sistergroup relationship between Coleorrhyncha and Heteroptera is well supported by cephalic features. Potential synapomorphies are the presence of a distinct mandibular sulcus, the reduced number of antennomeres, the absence of clasping organs in the labial groove, coiled accessory salivary ducts, the presence of a small cervical muscle M1a (M. pronotopostoccipitalis medialis), the presence of a second mandibular promotor M14 (M. zygomaticus mandibulae), the presence of M28 (M. verticopharyngalis), and M30 (M. frontobuccalis posterior).  相似文献   
77.
Glycosylated equine prolactin (G-ePRL) and nonglycosylated ePRL were purified to homogeneity from side fractions obtained during isolation of LH/FSH from horse pituitaries. Both PRL forms were isolated together in high yield by the isolation procedure used for glycosylated porcine PRL/(G-pPRL) and pPRL, involving acetone extraction/precipitation, NaCl and isoelectric precipitation, and gel filtration. Purification of G-ePRL required additional Con A chromatography. The N-terminal amino acid sequencing for 32 cycles of G-ePRL and ePRL resulted in sequences identical to the known primary structure of ePRL. Based on MALDI mass spectrometry analysis and SDS-PAGE mobilities,G-ePRL and ePRL had estimated molecular weights of 25,000 and 23,000 Da, respectively. G-ePRL displayed only 60% of the immunoreactivity of ePRL in homologous radioimmunoassay. Using the Nb2 lymphoma cell bioassay, ePRL was found to have about l/30th the mitogenic activity of bovine PRL; G-ePRL was approximately l/10th as active as ePRL. Glycosylation of G-ePRL at Asn31 was confirmed by isolation and sequence analysis of an enzymatically derived G-ePRL glycopeptide spanning residues 29–37. Monosaccharide compositions of intact G-ePRL and this glycopeptide were very similar (Man3, GlcNAc2, GalNAc1, Fuc0.6, Gal0.2, NeuAc0.15) and resembled that of G-pPRL. The glycopeptide contained one sulfate residue as determined by ion chromatography after acid hydrolysis, indicating the presence of a sulfated monosaccharide. Comparative carbohydrate analysis of G-ePRL and other G-PRL preparations suggests that the functionally significant Asn31 carbohydrate unit is a fucosylated complex mono- and/or biantennary oligosaccharide terminating with a sulfated GalNAc residue and two or three Man residues.  相似文献   
78.
DEK1, the single calpain of land plants, is a member of the ancient membrane bound TML–CysPc–C2L calpain family that dates back 1.5 billion years. Here we show that the CysPc–C2L domains of land plant calpains form a separate sub‐clade in the DEK1 clade of the phylogenetic tree of plants. The charophycean alga Mesostigma viride DEK1‐like gene is clearly divergent from those in land plants, suggesting that a major evolutionary shift in DEK1 occurred during the transition to land plants. Based on genetic complementation of the Arabidopsis thaliana dek1‐3 mutant using CysPc–C2L domains of various origins, we show that these two domains have been functionally conserved within land plants for at least 450 million years. This conclusion is based on the observation that the CysPc–C2L domains of DEK1 from the moss Physcomitrella patens complements the A. thaliana dek1‐3 mutant phenotype. In contrast, neither the CysPc–C2L domains from M. viride nor chimeric animal–plant calpains complement this mutant. Co‐evolution analysis identified differences in the interactions between the CysPc–C2L residues of DEK1 and classical calpains, supporting the view that the two enzymes are regulated by fundamentally different mechanisms. Using the A. thaliana dek1‐3 complementation assay, we show that four conserved amino acid residues of two Ca2+‐binding sites in the CysPc domain of classical calpains are conserved in land plants and functionally essential in A. thaliana DEK1.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号