首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   4篇
  2024年   1篇
  2022年   8篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   8篇
  2015年   10篇
  2014年   13篇
  2013年   14篇
  2012年   6篇
  2011年   10篇
  2010年   7篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   8篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
91.
The Protein Journal - Transgenic crops expressing Cry δ-endotoxins of Bacillus thuringiensis for insect resistance have been commercialized worldwide with increased crop productivity and...  相似文献   
92.
The homotrimeric spike glycoprotein hemagglutinin (HA) of influenza virus undergoes a low pH-mediated conformational change which mediates the fusion of the viral envelope with the target membrane. Previous approaches predict that the interplay of electrostatic interactions between and within HA subunits, HA 1 and HA2, are essential for the metastability of the HA ectodomain. Here, we show that suspension media of low ionic concentration promote fusion of fluorescent labelled influenza virus X31 with erythrocyte ghosts and with ganglioside containing liposomes. By measuring the low pH mediated inactivation of the fusion competence of HA and the Proteinase K sensitivity of low pH incubated HA we show that the conformational change is promoted by low ionic concentration. We surmise that electrostatic attraction within the HA ectodomain is weakened by lowering the ionic concentration facilitating the conformational change at low pH. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   
93.
Gupta V  Khurana R  Tyagi AK 《Plant cell reports》2007,26(11):1919-1931
Differential screening of a stage-specific cDNA library of Indica rice has been used to identify two genes expressed in pre-pollination stage panicles, namely OSIPA and OSIPK coding for proteins similar to expansins/pollen allergens and calcium-dependent protein kinases (CDPK), respectively. Northern analysis and in situ hybridizations indicate that OSIPA expresses exclusively in pollen while OSIPK expresses in pollen as well as anther wall. Promoters of these two anther-specific genes show the presence of various cis-acting elements (GTGA and AGAAA) known to confer anther/pollen-specific gene expression. Organ/tissue-specific activity and strength of their regulatory regions have been determined in transgenic systems, i.e., tobacco and Arabidopsis. A unique temporal activity of these two promoters was observed during various developmental stages of anther/pollen. Promoter of OSIPA is active during the late stages of pollen development and remains active till the anthesis, whereas, OSIPK promoter is active to a low level in developing anther till the pollen matures. OSIPK promoter activity diminishes before anthesis. Both promoters show a potential to target expression of the gene of interest in developmental stage-specific manner and can help engineer pollen-specific traits like male-sterility in plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Accessions: OSIPA cDNA, AF220610; OSIPK cDNA, AF312920; OSIPA partial gene and upstream promoter region, AY166659; OSIPK gene-specific and upstream sequence, AY168440.  相似文献   
94.
Albendazole (ABZ) has an anti-tumor ability and inhibits HIF-1α activity. HIF-1α is associated with glycolysis and vascular endothelial cell growth factor (VEGF) expression, which plays an important role in cancer progression. These clues indicate that ABZ exerts an anti-cancer effect by regulating glycolysis and VEGF expression. The aim of this study is to clarify the effects of ABZ on non-small cell lung cancer (NSCLC) cells and explore the underlying molecular mechanisms. The expression levels of HIF-1α and VEGF were detected using western blot analysis, and the effect of ABZ on glycolysis was evaluated by measuring the relative activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) and detecting the production of lactate in A549 and H1299 cells. The results showed that ABZ decreased the expression levels of HIF-1α and VEGF and suppressed glycolysis in under hypoxia, but not normoxic condition. Inhibiting HIF-1α also suppressed glycolysis and VEGF expression. Additionally, ABZ inhibited the volume and weight, decreased the relative activities of HK, PK, and LDH, and reduced the levels of HIF-1α and VEGF of A549 xenografts in mouse models. In conclusion, ABZ inhibited growth of NSCLC cells by suppressing HIF-1α-dependent glycolysis and VEGF expression.  相似文献   
95.
Plasmonics - Graphene-based polygonal optical antenna is designed and analyzed for enhanced bio-molecular detection. Absorption cross section and electric field enhancement factors of three...  相似文献   
96.
Charge heterogeneity of monoclonal antibodies is considered a critical quality attribute and hence needs to be monitored and controlled by the manufacturer. Typically, this is accomplished via separation of charge variants on cation exchange chromatography (CEX) using a pH or conductivity based linear gradient elution. Although an effective approach, this is challenging particularly during continuous processing as creation of linear gradient during continuous processing adds to process complexity and can lead to deviations in product quality upon slightest changes in gradient formation. Moreover, the long length of elution gradient along with the required peak fractionation makes process integration difficult. In this study, we propose a novel approach for separation of charge variants during continuous CEX chromatography by utilizing a combination of displacement mode chromatography and salt-based step elution. It has been demonstrated that while the displacement mode of chromatography enables control of acidic variants ≤26% in the CEX eluate, salt-based step gradient elution manages basic charge variant ≤25% in the CEX eluate. The proposed approach has been successfully demonstrated using feed materials with varying compositions. On comparing the designed strategy with 2-column concurrent (CC) chromatography, the resin specific productivity increased by 95% and resin utilization increased by 183% with recovery of main species >99%. Further, in order to showcase the amenability of the designed CEX method in continuous operation, the method was examined in our in-house continuous mAb platform.  相似文献   
97.
Powdery Mildew (PM) caused by fungal pathogen Oidium neolycopersici (O. neolycopersici) affects both greenhouse and field-grown tomato production. Resistance to PM disease can be achieved by selective inactivation of Mildew Resistance Locus O (MLO) genes encoding heptahelical transmembrane domains, which confer susceptibility to fungal pathogens. Natural loss-of-function mutation is a 19 base pair (bp) deletion in the SlMLO1 gene locus responsible for fungal resistance in S. lycopersicum var. cerasiforme. Introgression of these resistance alleles through breeding into elite varieties is possible. However, this is a long and labour-intensive process and has limitations due to linkage drag. Nonetheless, recent developments in the field of genome editing technology particularly CRISPR/Cas9 systems allows quick, effective and accurate genome modification at the target gene locus. Therefore, it is of interest to determine the efficacy and exact deletion that mimics the natural ol-2 (Slmlo1) mutation present in wild tomatoes using CRISPR/Cas9. 947 putative guide RNAs (gRNAs) were designed using Cas9 variants to broaden Protospacer Adjacent Motif (PAM) compatibility and to enhance DNA specificity against the SlMLO1 locus. 60 out of 947 gRNAs were selected based on the recognition of the PAM sequence, the MIT specificity ranking, the off-target sites, their distance from the 19bp natural ol-2 mutation, the secondary structure of the gRNAs, and their minimum free energy. In depth analysis of these 60 gRNAs helped in the selection of the top five gRNAs based on the above-mentioned criteria. These gRNAs are useful for introducing deletions identical to natural ol-2 mutants and impart resistance against fungal pathogen O. neolycopersici in cultivated tomato crops.  相似文献   
98.
Resistance (R) protein recognizes molecular signature of pathogen infection and activates downstream hypersensitive response signalling in plants. R protein works as a molecular switch for pathogen defence signalling and represent one of the largest plant gene family. Hence, understanding molecular structure and function of R proteins has been of paramount importance for plant biologists. The present study is aimed at predicting structure of R proteins signalling domains (CC-NBS) by creating a homology model, refining and optimising the model by molecular dynamics simulation and comparing ADP and ATP binding. Based on sequence similarity with proteins of known structures, CC-NBS domains were initially modelled using CED- 4 (cell death abnormality protein) and APAF-1 (apoptotic protease activating factor) as multiple templates. The final CC-NBS structural model was built and optimized by molecular dynamic simulation for 5 nanoseconds (ns). Docking of ADP and ATP at active site shows that both ligand bind specifically with same residues and with minor difference (1 Kcal/mol) in binding energy. Sharing of binding site by ADP and ATP and low difference in their binding site makes CC-NBS suitable for working as molecular switch. Furthermore, structural superimposition elucidate that CC-NBS and CARD (caspase recruitment domains) domain of CED-4 have low RMSD value of 0.9 A° Availability of 3D structural model for both CC and NBS domains will . help in getting deeper insight in these pathogen defence genes.  相似文献   
99.
100.
Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Moreover, sex and age are considered major risk factors in the development of CVDs. Mitochondria are vital for normal cardiac function, and regulation of mitochondrial structure and function may impact susceptibility to CVD. To identify potential role of mitochondria in sex-related differences in susceptibility to CVD, we analyzed the basal expression levels of mitochondria-related genes in the hearts of male and female rats. Whole genome expression profiling was performed in the hearts of young (8-week), adult (21-week), and old (78-week) male and female Fischer 344 rats and the expression of 670 unique genes related to various mitochondrial functions was analyzed. A significant (p<0.05) sexual dimorphism in expression levels of 46, 114, and 41 genes was observed in young, adult and old rats, respectively. Gene Ontology analysis revealed the influence of sex on various biological pathways related to cardiac energy metabolism at different ages. The expression of genes involved in fatty acid metabolism was significantly different between the sexes in young and adult rat hearts. Adult male rats also showed higher expression of genes associated with the pyruvate dehydrogenase complex compared to females. In young and adult hearts, sexual dimorphism was not noted in genes encoding oxidative phosphorylation. In old rats, however, a majority of genes involved in oxidative phosphorylation had higher expression in females compared to males. Such basal differences between the sexes in cardiac expression of genes associated with energy metabolism may indicate a likely involvement of mitochondria in susceptibility to CVDs. In addition, female rats showed lower expression levels of apoptotic genes in hearts compared to males at all ages, which may have implications for better preservation of cardiac mass in females than in males.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号