首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   646篇
  免费   41篇
  2024年   2篇
  2023年   12篇
  2022年   21篇
  2021年   30篇
  2020年   21篇
  2019年   17篇
  2018年   22篇
  2017年   28篇
  2016年   34篇
  2015年   46篇
  2014年   34篇
  2013年   57篇
  2012年   63篇
  2011年   56篇
  2010年   35篇
  2009年   22篇
  2008年   31篇
  2007年   25篇
  2006年   25篇
  2005年   23篇
  2004年   27篇
  2003年   5篇
  2002年   19篇
  2001年   4篇
  2000年   2篇
  1998年   2篇
  1997年   2篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1986年   3篇
  1985年   1篇
排序方式: 共有687条查询结果,搜索用时 15 毫秒
271.
Oxidative stress can induce mitochondrial dysfunction, mitochondrial DNA (mtDNA) depletion, and neurodegeneration, although the underlying mechanisms are poorly understood. The major mitochondrial antioxidant system that protects cells consists of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) and glutathione (GSH). To investigate the putative adaptive changes in antioxidant enzyme protein expression and targeting to mitochondria as mtDNA depletion occurs, we progressively depleted U87 astrocytoma cells of mtDNA by chronic treatment with ethidium bromide (EB, 50 ng/ml). Cellular MnSOD protein expression was markedly increased in a time-related manner while that of GPx showed time-related decreases. The mtDNA depletion also altered targeting or subcellular distribution of GPx, suggesting the importance of intact mtDNA in mitochondrial genome-nuclear genome signaling/communication. Cellular NADP+-ICDH activity also showed marked, time-related increases while their GSH content decreased. Thus, our findings suggest that interventions to elevate MnSOD, GPx, NADP+-ICDH, and GSH levels may protect brain cells from oxidative stress.  相似文献   
272.
Glioblastomas (GBM) are largely incurable as they diffusely infiltrate adjacent brain tissues and are difficult to diagnose at early stages. Biomarkers derived from serum, which can be obtained by minimally invasive procedures, may help in early diagnosis, prognosis and treatment monitoring. To develop a serum cytokine signature, we profiled 48 cytokines in sera derived from normal healthy individuals (n = 26) and different grades of glioma patients (n = 194). We divided the normal and grade IV glioma/GBM serum samples randomly into equal sized training and test sets. In the training set, the Prediction Analysis for Microarrays (PAM) identified a panel of 18 cytokines that could discriminate GBM sera from normal sera with maximum accuracy (95.40%) and minimum error (4.60%). The 18-cytokine signature obtained in the training set discriminated GBM sera from normal sera in the test set as well (accuracy 96.55%; error 3.45%). Interestingly, the 18-cytokine signature also differentiated grade II/Diffuse Astrocytoma (DA) and grade III/Anaplastic Astrocytoma (AA) sera from normal sera very efficiently (DA vs. normal–accuracy 96.00%, error 4.00%; AA vs. normal–accuracy 95.83%, error 4.17%). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using 18 cytokines resulted in the enrichment of two pathways, cytokine-cytokine receptor interaction and JAK-STAT pathways with high significance. Thus our study identified an 18-cytokine signature for distinguishing glioma sera from normal healthy individual sera and also demonstrated the importance of their differential abundance in glioma biology.  相似文献   
273.
The model haloarchaeon, Haloferax volcanii possess an extremely high, and highly specific, basal caspase activity in exponentially growing cells that closely resembles caspase-4. This activity is specifically inhibited by the pan-caspase inhibitor, z-VAD-FMK, and has no cross-reactivity with other known protease families. Although it is one of the dominant cellular proteolytic activities in exponentially growing H. volcanii cells, the interactive cellular roles remain unknown and the protein(s) responsible for this activity remain elusive. Here, biochemical purification and in situ trapping with caspase targeted covalent inhibitors combined with genome-enabled proteomics, structural analysis, targeted gene knockouts and treatment with canavanine demonstrated a catalytic linkage between caspase activity and thermosomes, proteasomes and cdc48b, a cell division protein and proteasomal degradation facilitating ATPase, as part of an ‘interactase’ of stress-related protein complexes with an established link to the unfolded protein response (UPR). Our findings provide novel cellular and biochemical context for the observed caspase activity in Archaea and add new insight to understanding the role of this activity, implicating their possible role in the establishment of protein stress and ER associated degradation pathways in Eukarya.  相似文献   
274.
Magic roundabout, a tumor endothelial marker: expression and signaling   总被引:3,自引:0,他引:3  
Molecular signals that guide blood vessels to specific paths are not fully deciphered, but are thought to be similar to signals that mediate neuronal guidance. These cues are not only critical for normal blood vessel development, but may also play a major role in tumor angiogenesis. In this study, we have demonstrated the tumor endothelial specific expression of a Robo family member, magic roundabout (MRB), functionally characterized its role in endothelial cell migration and defined a signaling pathway that might mediate this function. We show that MRB is differentially over-expressed in tumor endothelial cells versus normal adult endothelial cells in numerous solid tumors. Moreover, over-expression of MRB in endothelial cells activates MRB in a ligand-independent fashion, and activation of MRB via Slit2, a putative ligand, results in inhibition of VEGF and FGF induced migration. We also demonstrate that MRB induced inhibition of endothelial migration is partially mediated by the Ras-Raf-Mek-Erk signaling pathway. We therefore hypothesize that expression of MRB is involved in regulating the migration of endothelial cells during tumor angiogenesis.  相似文献   
275.
276.
277.
Membrane-spanning proteins contain both aqueous and membrane-spanning regions, both of which contribute to folding and stability. To explore the interplay between these two domains we have designed and studied the assembly of coiled-coil peptides that span from the membrane into the aqueous phase. The membrane-spanning segment is based on MS1, a transmembrane coiled coil that contains a single Asn at a buried a position of a central heptad in its sequence. This Asn has been shown to drive assembly of the monomeric peptide in a membrane environment to a mixture of dimers and trimers. The coiled coil has now been extended into the aqueous phase by addition of water-soluble helical extensions. Although too short to fold in isolation, these helical extensions were expected to interact synergistically with the transmembrane domain and modulate its stability as well as its conformational specificity for forming dimers versus trimers. One design contains Asn at a position of the aqueous helical extension, which was expected to specify a dimeric state; a second peptide, which contains Val at this position, was expected to form trimers. The thermodynamics of assembly of the hybrid peptides were studied in micelles by sedimentation equilibrium ultracentrifugation. The aqueous helical extensions indeed conferred additional stability and conformational specificity to MS1 in the expected manner. These studies highlight the delicate interplay between membrane-spanning and water-soluble regions of proteins, and demonstrate how these different environments define the thermodynamics of a given specific interaction. In this case, an Asn in the transmembrane domain provided a strong driving force for folding but failed to specify a unique oligomerization state, while an Asn in the water-soluble domain was able to define specificity for a specific aggregation state as well as modulate stability.  相似文献   
278.
The M2 protein from influenza A virus is a 97-amino-acid protein with a single transmembrane helix that forms proton-selective channels essential to virus function. The hydrophobic transmembrane domain of the M2 protein (M2TM) contains a sequence motif that mediates the formation of functional tetramers in membrane environments. A variety of structural models have previously been proposed which differ in the degree of helix tilt, with proposed tilts ranging from approximately 15 degrees to 38 degrees . An important issue for understanding the structure of M2TM is the role of peptide-lipid interactions in the stabilization of the lipid bilayer bound tetramer. Here, we labeled the N terminus of M2TM with a nitroxide and studied the tetramer reconstituted into lipid bilayers of different thicknesses using EPR spectroscopy. Analyses of spectral changes provide evidence that the lipid bilayer does influence the conformation. The structural plasticity displayed by M2TM in response to membrane composition may be indicative of functional requirements for conformational change. The various structural models for M2TM proposed to date--each defined by a different set of criteria and in a different environment--might provide snapshots of the distinct conformational states sampled by the protein.  相似文献   
279.
In an effort to identify CYP and hERG clean mPGES-1 inhibitors from the dihydrofuran-fused tricyclic benzo[d]imidazole series lead 7, an extensive structure-activity relationship (SAR) studies were performed. Optimization of A, D and E-rings in 7 afforded many potent compounds with human whole blood potency in the range of 160–950?nM. Selected inhibitors 21d, 21j, 21m, 21n, 21p and 22b provided selectivity against COX-enzymes and mPGES-1 isoforms (mPGES-2 and cPGES) along with sufficient selectivity against prostanoid synthases. Most of the tested analogs demonstrated required metabolic stability in liver microsomes, low hERG and CYP liability. Oral pharmacokinetics and bioavailability of lead compounds 21j, 21m and 21p are discussed in multiple species like rat, guinea pig, dog, and cynomolgus monkey. Besides, these compounds revealed low to moderate activity against human pregnane X receptor (hPXR). The selected lead 21j further demonstrated in vivo efficacy in acute hyperalgesia (ED50: 39.6?mg/kg) and MIA-induced osteoarthritic pain models (ED50: 106?mg/kg).  相似文献   
280.
Heme metabolism in promastigotes of Leishmania donovani   总被引:3,自引:0,他引:3  
Promastigotes of Leishmania donovani (Dd-8 strain) showed presence of important key enzymes of heme synthesizing (d-aminolevulinic acid synthase and ferrochelatase) and degrading (heme oxygenase and biliverdin reductase) systems, classical leishmanicidal drugs viz allopurinol, amphotericin B, pentamidine and CDRI compound 93/202 inhibited the heme oxygenase activity of the parasite, whereas, -aminolevulinic acid synthase activity practically remained unaffected. The Km, Vmax ad pH values of heme oxygenase of promastigotes were found to be 1666 M hemin, 625 nmol of bilirubin formed h-1 mg protein-1 and 7.5 respectively. The findings suggest the presence and importance of heme metabolism in the de novo synthesis of different hemoproteins of the Leishmania parasite as well as the detoxification and its defence against biological insults.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号