首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   975篇
  免费   42篇
  1017篇
  2023年   6篇
  2022年   16篇
  2021年   26篇
  2020年   18篇
  2019年   23篇
  2018年   37篇
  2017年   19篇
  2016年   25篇
  2015年   42篇
  2014年   47篇
  2013年   60篇
  2012年   73篇
  2011年   73篇
  2010年   41篇
  2009年   30篇
  2008年   43篇
  2007年   55篇
  2006年   46篇
  2005年   43篇
  2004年   31篇
  2003年   31篇
  2002年   14篇
  2001年   11篇
  2000年   10篇
  1999年   15篇
  1998年   5篇
  1997年   4篇
  1996年   9篇
  1995年   7篇
  1994年   6篇
  1993年   5篇
  1992年   6篇
  1991年   8篇
  1990年   10篇
  1988年   5篇
  1987年   5篇
  1986年   9篇
  1985年   8篇
  1984年   4篇
  1982年   9篇
  1981年   7篇
  1980年   5篇
  1977年   5篇
  1975年   5篇
  1973年   5篇
  1972年   4篇
  1971年   4篇
  1970年   8篇
  1968年   4篇
  1964年   3篇
排序方式: 共有1017条查询结果,搜索用时 46 毫秒
91.
There is no agreement among workers in defining the Simian crease, thus making it difficult to compile or compare their works. The Simian crease, invariably present among anthropoid apes and frequent among mongoloid idiots, is also present in varying degrees among normal populations. Mode of inheritance of this trait is not yet established. This paper attempts to examine critically the definitions and classifications forwarded by various authorities. A new definition has been suggested considering the course of both the distal and the proximal creases. A new classification, to include all transitional variations has also been proposed. A progressive transition from the typical Simian crease to the normal crease configuration is recognized. Further investigation to assess the hereditability of Simian as well as normal creases is emphasized.  相似文献   
92.
We examined the antiobesity effect of a saponin-rich fraction of a Gymnema sylvestre R. Br. aqueous leaf extract (SGE) using cafeteria and high-fat diet-induced obese rats for a period of eight weeks. SGE was orally administered at a dose of 100 mg/kg body weight once a day to the treatment group. It significantly decreased the body weight, food consumption, visceral organs weight, and the levels of triglycerides, total cholesterol, low-density lipoproteins, very low-density lipoproteins, atherogenic index, glucose, and increased the levels of high-density lipoproteins. There was no significant difference with respect to all parameters of the study in case of normal (N) diet and N diet + SGE rats. In vitro, SGE inhibited the pancreatic lipase activity. The present study gave clear evidence that the SGE has a significant antiobese action, supporting its use in traditional medicine, and can be used as a substitute for synthetic drugs.  相似文献   
93.
94.
95.
    
Callus browning is a typical feature of callus cultures derived from the hypocotyl of Jatropha curcas. Brown callus results in decreased regenerative ability, poor growth and even death. In this study, we investigated the effect of browning on callus morphology and biochemical indices. Light microscopy and scanning electron microscopy showed striking differences in callus morphology. During browning, chlorophylls and carotenoids concentrations decreased steadily. Polyphenol oxidase (PPO) and peroxidase (POD) enzymatic activities patterns were similar during callus culture with a higher activity level at week 3 compared to week 2 or later weeks. Grey relation degree analysis indicated that PPO played a more important role than POD in enzymatic callus browning. Polyacrylamide gel electrophoresis results showed differences between browning and non-browning callus. Gas chromatography–mass spectrometry results showed that saturated and unsaturated fatty acid quantities differed significantly but there was little difference in fatty acid composition between non-browning and browning callus. Differences in 17, 18.4 and 25 kDa protein concentrations were also observed in browning and non-browning callus using sodium dodecyl sulfate–polyacrylamide gel electrophoresis.  相似文献   
96.
  总被引:1,自引:0,他引:1  
Type 2 diabetes mellitus is a complex disorder with a strong genetic component. Inherited complex disease susceptibility in humans is most commonly associated with single nucleotide polymorphisms. The mechanisms by which this occurs are still poorly understood. Here we focus on analyzing the effect of a set of disease-causing missense variations of the monogenetic form of Type 2 diabetes mellitus and a set of disease-associated nonsynonymous variations in comparison with that of nonsynonymous variations without any experimental evidence for association with any disease. Analysis of different properties such as evolutionary conservation status, solvent accessibility, secondary structure, etc. suggests that disease-causing variations are associated with extreme changes in the value of the parameters relating to evolutionary conservation and/or protein stability. Disease-associated variations are rather moderately conserved and have a milder effect on protein function and stability. The majority of the genes harboring these variations are clustered in or near the insulin signaling network. Most of these variations are identified as potential sites for post-translational modifications; certain predictions have already reported experimental evidence. Overall our results indicate that Type 2 diabetes mellitus may result from a large number of single nucleotide polymorphisms that impair modular domain function and post-translational modifications involved in signaling. Our emphasis is more on conserved corresponding residues than the variation alone. We believe that the approach of considering a stretch of peptide sequence involving a polymorphism would be a better method of defining the role of the polymorphism in the manifestation of this disease. Because most of the variations associated with the disease are rare, we hypothesize that this disease is a \"mosaic model\" of interaction between a large number of rare alleles and a small number of common alleles along with the environment, which is little contrary to the existing common disease common variant model.  相似文献   
97.
Bacterial genome segregation and cell division has been studied mostly in bacteria harbouring single circular chromosome and low-copy plasmids. Deinococcus radiodurans, a radiation-resistant bacterium, harbours multipartite genome system. Chromosome I encodes majority of the functions required for normal growth while other replicons encode mostly the proteins involved in secondary functions. Here, we report the characterization of putative P-loop ATPase (ParA2) encoded on chromosome II of D. radiodurans. Recombinant ParA2 was found to be a DNA-binding ATPase. E. coli cells expressing ParA2 showed cell division inhibition and mislocalization of FtsZ-YFP and those expressing ParA2-CFP showed multiple CFP foci formation on the nucleoid. Although, in trans expression of ParA2 failed to complement SlmA loss per se, it could induce unequal cell division in slmAminCDE double mutant. These results suggested that ParA2 is a nucleoid-binding protein, which could inhibits cell division in E. coli by affecting the correct localization of FtsZ and thereby cytokinesis. Helping slmAminCDE mutant to produce minicells, a phenotype associated with mutations in the ‘Min’ proteins, further indicated the possibility of ParA2 regulating cell division by bringing nucleoid compaction at the vicinity of septum growth.  相似文献   
98.
Nonhomologous DNA end joining (NHEJ) is one of the major double-strand break (DSB) repair pathways in higher eukaryotes. Recently, it has been shown that alternative NHEJ (A-NHEJ) occurs in the absence of classical NHEJ and is implicated in chromosomal translocations leading to cancer. In the present study, we have developed a novel biochemical assay system utilizing DSBs flanked by varying lengths of microhomology to study microhomology-mediated alternative end joining (MMEJ). We show that MMEJ can operate in normal cells, when microhomology is present, irrespective of occurrence of robust classical NHEJ. Length of the microhomology determines the efficiency of MMEJ, 5 nt being obligatory. Using this biochemical approach, we show that products obtained are due to MMEJ, which is dependent on MRE11, NBS1, LIGASE III, XRCC1, FEN1 and PARP1. Thus, we define the enzymatic machinery and microhomology requirements of alternative NHEJ using a well-defined biochemical system.DNA double-strand breaks (DSBs) are the most deleterious to the genome among various lesions. Nonhomologous end joining (NHEJ) is one of the major DSB repair pathways in higher eukaryotes.1, 2, 3 In the absence of key NHEJ factors, another distinct but error-prone pathway known as alternative NHEJ (A-NHEJ) has been described to have an important role in DSB repair.4, 5, 6, 7 It has been shown that majority of A-NHEJ-mediated repair of DSBs utilize distinct microhomology regions, hence termed microhomology-mediated end joining (MMEJ).4, 8, 9A-NHEJ has been proposed as a possible cause for chromosomal translocations. Studies have shown co-amplification of c-MYC and IgH locus from pro-B lymphomas in mice deficient for p53 and NHEJ.10 A reduced level of class switch recombination (CSR) and increased number of chromosomal rearrangements at IgH locus have been shown in XRCC4- and LIGASE IV-deficient murine B cells.8 The occurrence of robust alternative end joining has been reported in the absence of NHEJ proteins, when murine RAG proteins were absent.11Unraveling the enzymatic machinery involved in alternative end joining is currently an active area of research. Recently, it was shown that MRE11-RAD50-NBS1 complex may be involved in a subset of alternative NHEJ,5, 12, 13, 14 whereas ATM has a regulatory role.15 Role of PARP1 in repairing switch regions through a microhomology-mediated pathway leading to IgH/c-MYC translocations during immunoglobulin CSR has been described.16 Besides, studies have also suggested a role for DNA LIGASE IIIα and WRN in A-NHEJ.17 Interestingly, XRCC1 was shown to be dispensable in A-NHEJ during CSR, whereas functional relevance of Ligase I, III and Pol λ have been established.18, 19, 20 Hence, it can be concluded that canonical NHEJ (C-NHEJ) requires LIGASE IV–XRCC4 complex, while A-NHEJ is predominant in the absence of C-NHEJ proteins and is mainly characterized by joining utilizing microhomology (MMEJ). Further, it has been demonstrated that RPA, when bound to single-stranded DNA can antagonize MMEJ.21 Very recently, a genetic system was reported in budding yeast to detect microhomology-mediated repair.22 However, little is known whether alternative NHEJ can be operative when classical NHEJ machinery is intact.23 A recent study suggested that MMEJ is also functional in normal mammalian cells. Besides, HR and MMEJ share the initial steps of end resection for DSB repair in mammalian cells.24 However, it appears that there is not much consensus among different research groups over its presence and relevance in normal cells.23 Therefore, several aspects of alternative NHEJ still need to be resolved. For example, its precise mechanism and microhomology length requirements are yet to be fully uncovered. Its occurrence in normal cells needs to be proved beyond doubt. Although there are independent studies showing the role of multiple proteins using gene knockdown or knockout strategies, their involvement needs to be confirmed.In the present study, we have established a cell-free repair assay system using which we show that MMEJ is operative even in the presence of classical NHEJ machinery. Further, our data suggest that MMEJ operates not only in cancer cells but also in normal cells. We show that a minimum of 5 nt microhomology is required for MMEJ and is independent of classical NHEJ proteins such as KU70, KU80 and LIGASE IV. Finally, we show that MRN complex, XRCC1, FEN1, PARP1 and LIGASE III are the factors responsible for joining mediated through microhomology.  相似文献   
99.
The kallikrein-kinin system (KKS) comprises a cascade of proteolytic enzymes and biogenic peptides that regulate several physiological processes. Over-expression of tissue kallikrein-1 and modulation of the KKS shows beneficial effects on insulin sensitivity and other parameters relevant to type 2 diabetes mellitus. However, much less is known about the role of kallikreins, in particular tissue kallikrein-1, in type 1 diabetes mellitus (T1D). We report that chronic administration of recombinant human tissue kallikrein-1 protein (DM199) to non-obese diabetic mice delayed the onset of T1D, attenuated the degree of insulitis, and improved pancreatic beta cell mass in a dose- and treatment frequency-dependent manner. Suppression of the autoimmune reaction against pancreatic beta cells was evidenced by a reduction in the relative numbers of infiltrating cytotoxic lymphocytes and an increase in the relative numbers of regulatory T cells in the pancreas and pancreatic lymph nodes. These effects may be due in part to a DM199 treatment-dependent increase in active TGF-beta1. Treatment with DM199 also resulted in elevated C-peptide levels, elevated glucagon like peptide-1 levels and a reduction in dipeptidyl peptidase-4 activity. Overall, the data suggest that DM199 may have a beneficial effect on T1D by attenuating the autoimmune reaction and improving beta cell health.  相似文献   
100.
Abstract: Differences in prostaglandin H synthetase (PHS) activity in the substantia nigra of age- and post-mortem interval-matched parkinsonian, Alzheimer's, and normal control brain tissue were assessed. Prostaglandin E2 (PGE2, an index of PHS activity) was higher in substantia nigra of parkinsonian brain tissue than Alzheimer's or control tissue. Incubation of substantia nigra slices with arachidonic acid (AA) increased PGE2 synthesis. Dopamine stimulated PHS synthesis of PGE2. [3H]Dopamine was activated by PHS to electrophilic intermediate(s) that covalently bound to DNA, microtubulin protein, bovine serum albumin, and sulfhydryl reagents. When AA was replaced by hydrogen peroxide, PHS/H2O2-supported binding proceeded at rates similar to those observed with PHS/AA. Indomethacin and aspirin inhibited AA-mediated cooxidation of dopamine but not H2O2-mediated metabolism. PHS-mediated metabolism of dopamine was not affected by monoamine oxidase inhibitors. Substrate requirements and effects of specific inhibitors suggest cooxidation of dopamine is mediated by the hydroperoxidase activity of PHS. 32P-postlabeling was used to detect dopamine-DNA adducts. PHS/AA activation of dopamine in the presence of DNA resulted in the formation of five dopamine-DNA adducts, i.e., 23, 43, 114, 70, and 270 amol/µg DNA. DNA adduct formation was PHS, AA, and dopamine dependent. PHS catalyzed cooxidation of dopamine in dopaminergic neuronal degeneration is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号