首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1842篇
  免费   98篇
  国内免费   1篇
  1941篇
  2024年   5篇
  2023年   21篇
  2022年   34篇
  2021年   63篇
  2020年   36篇
  2019年   39篇
  2018年   49篇
  2017年   42篇
  2016年   60篇
  2015年   94篇
  2014年   105篇
  2013年   126篇
  2012年   187篇
  2011年   165篇
  2010年   90篇
  2009年   61篇
  2008年   106篇
  2007年   91篇
  2006年   82篇
  2005年   81篇
  2004年   77篇
  2003年   74篇
  2002年   58篇
  2001年   10篇
  2000年   11篇
  1999年   9篇
  1998年   10篇
  1997年   8篇
  1996年   4篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   8篇
  1991年   12篇
  1990年   11篇
  1988年   11篇
  1986年   3篇
  1985年   8篇
  1984年   4篇
  1983年   5篇
  1981年   5篇
  1980年   8篇
  1979年   9篇
  1978年   5篇
  1977年   4篇
  1974年   3篇
  1973年   5篇
  1972年   7篇
  1971年   3篇
  1970年   3篇
排序方式: 共有1941条查询结果,搜索用时 15 毫秒
901.
This study was designed to determine whether treatment with erythropoietin (EPO) could protect cerebral microvasculature against the pathological consequences of endothelial nitric oxide (NO) synthase uncoupling. Wild‐type and GTP cyclohydrolase I (GTPCH‐I)‐deficient hph1 mice were administered EPO (1000 U/kg/day, s.c., 3 days). Cerebral microvessels of hph1 mice demonstrated reduced tetrahydrobiopterin (BH4) bioavailability, increased production of superoxide anions and impaired endothelial NO signaling. Treatment of hph1 mice with EPO attenuated the levels of 7,8‐dihydrobiopterin, the oxidized product of BH4, and significantly increased the ratio of BH4 to 7,8‐dihydrobiopterin. Moreover, EPO decreased the levels of superoxide anions and increased NO bioavailability in cerebral microvessels of hph1 mice. Attenuated oxidation of BH4 and inhibition of endothelial NO synthase uncoupling were explained by the increased expression of antioxidant proteins, manganese superoxide dismutase, and catalase. The protective effects of EPO observed in cerebral microvessels of hph1 mice were also observed in GTPCH‐I siRNA‐treated human brain microvascular endothelial cells exposed to EPO (1 U/mL or 10 U/mL; 3 days). Our results suggest that EPO might protect the neurovascular unit against oxidative stress by restoring bioavailability of BH4 and endothelial NO in the cerebral microvascular endothelium.

  相似文献   

902.
Using high-resolution MS-based proteomics in combination with multiple protease digestion, we profiled, with on average 90% sequence coverage, all 13 viral proteins present in an human adenovirus (HAdV) vector. This in-depth profile provided multiple peptide-based evidence on intrinsic protease activity affecting several HAdV proteins. Next, the generated peptide library was used to develop a targeted proteomics method using selected reaction monitoring (SRM) aimed at quantitative profiling of the stoichiometry of all 13 proteins present in the HAdV. We also used this method to probe the release of specific virus proteins initiated by thermal stimulation, mimicking the early stage of HAdV disassembly during entry into host cells. We confirmed the copy numbers of the most well characterized viral capsid components and established the copy numbers for proteins whose stoichiometry has so far not been accurately defined. We also found that heating HAdV induces the complete release of the penton base and fiber proteins as well as a substantial release of protein VIII and VI. For these latter proteins, maturational proteolysis by the adenoviral protease leads to the differential release of fragments with certain peptides being fully released and others largely retained in the AdV particles. This information is likely to be beneficial for the ongoing interpretation of high resolution cryoEM and x-ray electron density maps.  相似文献   
903.
Escherichia coli DnaK (Hsp70) cooperates with DnaJ and GrpE in its essential role as a molecular chaperone. Function of mitochondrial Hsp70 (mHsp70) in protein folding and organellar import in eukaryotes is critically dependent on GrpE. We cloned two genes from tobacco (Nicotiana tabacum) BY2 cells based on peptide sequences from a purified protein. The predicted amino acid sequences of both clones resembled that of GrpE from E. coli and its homologues from eukaryotes, and a cDNA clone from Arabidopsis thaliana. One gene (Type 1) encoded a deduced protein that was identical to the purified protein while the other (Type 2) encoded a deduced protein that has 80% sequence identity to Type 1. Both tobacco and Arabidopsis thaliana GrpE homologues bound to DnaK and ATP inhibited this binding. The tobacco GrpE homologue contained a typical N-terminal mitochondrial target presequence of 64 residues and the presequence directed the green fluorescent protein to tobacco mitochondria. The tobacco GrpE homologue also associated with mHsp70 when reintroduced into BY2 protoplasts, and this association was disrupted by ATP. A three-dimensional structure for the tobacco GrpE homologue was modeled based on the X-ray structure of E. coli GrpE complexed with DnaK. The modeled structure has the same overall structure as E. coli GrpE. We propose that the tobacco GrpE homologue interacts with mHsp70 in a manner analogous to E. coli GrpE with DnaK and designate it as tobacco mitochondrial GrpE (NtmGrpE).  相似文献   
904.
905.
The studies described here were performed to characterize further the plasma membrane associated protein BsSco, which is the product of the gene ypmQ, in Bacillus subtilis. BsSco is a member of the Sco family of proteins found in the inner mitochondrial membrane of yeast and humans and implicated as an accessory protein in the assembly of the Cu(A) site of cytochrome c oxidase. We have cloned the gene expressing BsSco, placed a six-histidine tag on its C-terminus, and over-expressed this protein in B. subtilis. Recombinant BsSco with the his-tag has been purified from Triton X-100-solubilized plasma membranes by nickel metal affinity chromatography. Mass spectral analysis of the purified protein is consistent with processing of BsSco by signal peptidase II removing an N-terminal putative transmembrane sequence to leave an acyl-glyceryl moiety at cysteine residue 19. Antibodies, raised against purified, recombinant BsSco, were used to characterize the timing of the level of native BsSco in batch cultures of wild-type B. subtilis. There is a marked lag in the level of native BsSco, but it does appear prior to cytochrome c oxidase, which is expressed in late stage growth. This work supports a role for BsSco in the assembly of the Cu(A) site of cytochrome c oxidase and its functional relationship to the Sco proteins found in eukaryotic cells.  相似文献   
906.
Bacterial Rap family proteins have been most extensively studied in Bacillus subtilis, where they regulate activities including sporulation, genetic competence, antibiotic expression, and the movement of the ICEBs1 transposon. One subset of Rap proteins consists of phosphatases that control B. subtilis and B. anthracis sporulation by dephosphorylating the response regulator Spo0F. The mechanistic basis of Rap phosphatase activity was unknown. Here we present the RapH-Spo0F X-ray crystal structure, which shows that Rap proteins consist of a 3-helix bundle and a tetratricopeptide repeat domain. Extensive biochemical and genetic functional studies reveal the importance of the observed RapH-Spo0F interactions, including the catalytic role of a glutamine in the RapH 3-helix bundle that inserts into the Spo0F active site. We show that in addition to dephosphorylating Spo0F, RapH can antagonize sporulation by sterically blocking phosphoryl transfer to and from Spo0F. Our structure-function analysis of the RapH-Spo0F interaction identified Rap protein residues critical for Spo0F phosphatase activity. This information enabled us to assign Spo0F phosphatase activity to a Rap protein based on sequence alone, which was not previously possible. Finally, as the ultimate test of our newfound understanding of the structural requirements for Rap phosphatase function, a non-phosphatase Rap protein that inhibits the binding of the response regulator ComA to DNA was rationally engineered to dephosphorylate Spo0F. In addition to revealing the mechanistic basis of response regulator dephosphorylation by Rap proteins, our studies support the previously proposed T-loop-Y allostery model of receiver domain regulation that restricts the aromatic "switch" residue to an internal position when the β4-α4 loop adopts an active-site proximal conformation.  相似文献   
907.
908.
Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance (IR), are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K), and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 'requires' E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as 'sufficient' to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras--the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large (Dlg1) protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif (PBM) of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes, adipocytes, or myoblasts, and reduced glucose output by hepatocytes. Thus, the highly attractive anti-hyperglycemic effect of Ad36 is mirrored by E4orf1 protein, which may offer a novel ligand to develop anti-hyperglycemic drugs.  相似文献   
909.
910.
Enhanced production of a 42-residue beta amyloid peptide (Aβ(42)) in affected parts of the brain has been suggested to be the main causative factor for the development of Alzheimer's Disease (AD). The severity of the disease depends not only on the amount of the peptide but also its conformational transition leading to the formation of oligomeric amyloid-derived diffusible ligands (ADDLs) in the brain of AD patients. Despite being significant to the understanding of AD mechanism, no atomic-resolution structures are available for these species due to the evanescent nature of ADDLs that hinders most structural biophysical investigations. Based on our molecular modeling and computational studies, we have designed Met35Nle and G37p mutations in the Aβ(42) peptide (Aβ(42)Nle35p37) that appear to organize Aβ(42) into stable oligomers. 2D NMR on the Aβ(42)Nle35p37 peptide revealed the occurrence of two β-turns in the V24-N27 and V36-V39 stretches that could be the possible cause for the oligomer stability. We did not observe corresponding NOEs for the V24-N27 turn in the Aβ(21-43)Nle35p37 fragment suggesting the need for the longer length amyloid peptide to form the stable oligomer promoting conformation. Because of the presence of two turns in the mutant peptide which were absent in solid state NMR structures for the fibrils, we propose, fibril formation might be hindered. The biophysical information obtained in this work could aid in the development of structural models for toxic oligomer formation that could facilitate the development of therapeutic approaches to AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号