首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1836篇
  免费   103篇
  国内免费   1篇
  2024年   5篇
  2023年   21篇
  2022年   31篇
  2021年   63篇
  2020年   35篇
  2019年   36篇
  2018年   51篇
  2017年   40篇
  2016年   55篇
  2015年   92篇
  2014年   104篇
  2013年   119篇
  2012年   182篇
  2011年   161篇
  2010年   98篇
  2009年   64篇
  2008年   107篇
  2007年   99篇
  2006年   82篇
  2005年   85篇
  2004年   74篇
  2003年   78篇
  2002年   60篇
  2001年   10篇
  2000年   10篇
  1999年   13篇
  1998年   13篇
  1997年   9篇
  1996年   5篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   8篇
  1991年   11篇
  1990年   10篇
  1989年   3篇
  1988年   7篇
  1987年   3篇
  1985年   6篇
  1984年   4篇
  1983年   6篇
  1981年   7篇
  1980年   9篇
  1979年   7篇
  1978年   4篇
  1977年   6篇
  1974年   5篇
  1973年   5篇
  1972年   6篇
  1971年   2篇
排序方式: 共有1940条查询结果,搜索用时 19 毫秒
101.
Heterologous glycoproteins usually do not fold properly in yeast cells and fail to leave the endoplasmic reticulum. Here we show that the Hsp150Delta polypeptide carrier promoted proper folding and secretion of the catalytic ectodomain of rat alpha2,3-sialyltransferase (ST3Ne) in Pichia pastoris. The efficiency of the Hsp150Delta carrier in P. pastoris and Saccharomyces cerevisiae was at least as high as that of the MFalpha carrier. Most of Hsp150Delta-ST3Ne and MFalpha-ST3Ne remained noncovalently attached to the cell wall via the ST3Ne portion. The strength of the HSP150 promoter was found to be comparable to that of the GAL1 promoter.  相似文献   
102.
Antiapoptotic activity of NF-kappaB in tumors contributes to acquisition of resistance to chemotherapy. Degradation of IkappaB is a seminal step in activation of NF-kappaB. The IkappaB kinases, IKK1 and IKK2, have been implicated in both IkappaB degradation and subsequent modifications of NFkappaB. Using mouse embryo fibroblasts (MEFs) devoid of both IKK1 and IKK2 genes (IKK1/2(-/-)), we document a novel IkappaB degradation mechanism. We show that this degradation induced by a chemotherapeutic agent, doxorubicin (DoxR), does not require the classical serine 32 and 36 phosphorylation or the PEST domain of IkappaBalpha. Degradation of IkappaBalpha is partially blocked by phosphatidylinositol 3-kinase inhibitor LY294002 and is mediated by the proteasome. Free NF-kappaB generated by DoxR-induced IkappaB degradation in IKK1/2(-/-) cells is able to activate chromatin based NF-kappaB reporter gene and expression of the endogenous target gene, IkappaBalpha. These results also imply that modification of NF-kappaB by IKK1 or IKK2 either prior or subsequent to its release from IkappaB is not essential for NF-kappaB-mediated gene expression at least in response to DNA damage. In addition, DoxR-induced cell death in IKK1/2(-/-) MEFs is enhanced by simultaneous inhibition of NF-kappaB activation by blocking the proteasome activity. These results reveal an additional pathway of activating NF-kappaB during the course of anticancer therapy and provide a mechanistic basis for the observation that proteasome inhibitors could be used as adjuvants in chemotherapy.  相似文献   
103.
Under secondary metabolic conditions, the lignin-degrading basidiomycete Phanerochaete chrysosporium mineralizes 2,4,6-trichlorophenol. The pathway for the degradation of 2,4,6-trichlorophenol has been elucidated by the characterization of fungal metabolites and oxidation products generated by purified lignin peroxidase (LiP) and manganese peroxidase (MnP). The multistep pathway is initiated by a LiP- or MnP-catalyzed oxidative dechlorination reaction to produce 2,6-dichloro-1,4-benzoquinone. The quinone is reduced to 2,6-dichloro-1,4-dihydroxybenzene, which is reductively dechlorinated to yield 2-chloro-1,4-dihydroxybenzene. The latter is degraded further by one of two parallel pathways: it either undergoes further reductive dechlorination to yield 1,4-hydroquinone, which is ortho-hydroxylated to produce 1,2,4-trihydroxybenzene, or is hydroxylated to yield 5-chloro-1,2,4-trihydroxybenzene, which is reductively dechlorinated to produce the common key metabolite 1,2,4-trihydroxybenzene. Presumably, the latter is ring cleaved with subsequent degradation to CO2. In this pathway, the chlorine at C-4 is oxidatively dechlorinated, whereas the other chlorines are removed by a reductive process in which chlorine is replaced by hydrogen. Apparently, all three chlorine atoms are removed prior to ring cleavage. To our knowledge, this is the first reported example of aromatic reductive dechlorination by a eukaryote.  相似文献   
104.
Inflammatory bowel disease is a chronic gastrointestinal inflammatory disorder associated with changes in neuropeptide expression and function, including vasoactive intestinal peptide (VIP). VIP regulates intestinal vasomotor and secretomotor function and motility; however, VIP’s role in development and maintenance of colonic epithelial barrier homeostasis is unclear. Using VIP deficient (VIPKO) mice, we investigated VIP’s role in epithelial barrier homeostasis, and susceptibility to colitis. Colonic crypt morphology and epithelial barrier homeostasis were assessed in wildtype (WT) and VIPKO mice, at baseline. Colitic responses were evaluated following dinitrobenzene sulfonic acid (DNBS) or dextran-sodium sulfate (DSS) exposure. Mice were also treated with exogenous VIP. At baseline, VIPKO mice exhibited distorted colonic crypts, defects in epithelial cell proliferation and migration, increased apoptosis, and altered permeability. VIPKO mice also displayed reduced goblet cell numbers, and reduced expression of secreted goblet cell factors mucin 2 and trefoil factor 3. These changes were associated with reduced expression of caudal type homeobox 2 (Cdx2), a master regulator of intestinal function and homeostasis. DNBS and DSS-induced colitis were more severe in VIPKO than WT mice. VIP treatment rescued the phenotype, protecting VIPKO mice against DSS colitis, with results comparable to WT mice. In conclusion, VIP plays a crucial role in the development and maintenance of colonic epithelial barrier integrity under physiological conditions and promotes epithelial repair and homeostasis during colitis.  相似文献   
105.
Progress in understanding the pathophysiology, and providing novel treatments for glaucoma is dependent on good animal models of the disease. We present here a protocol for elevating intraocular pressure (IOP) in the rat, by injecting magnetic microspheres into the anterior chamber of the eye. The use of magnetic particles allows the user to manipulate the beads into the iridocorneal angle, thus providing a very effective blockade of fluid outflow from the trabecular meshwork. This leads to long-lasting IOP rises, and eventually neuronal death in the ganglion cell layer (GCL) as well as optic nerve pathology, as seen in patients with the disease. This method is simple to perform, as it does not require machinery, specialist surgical skills, or many hours of practice to perfect. Furthermore, the pressure elevations are very robust, and reinjection of the magnetic microspheres is not usually required unlike in some other models using plastic beads. Additionally, we believe this method is suitable for adaptation for the mouse eye.  相似文献   
106.

Background

Growing evidence suggests that epigenetic mechanisms of gene regulation may play a role in susceptibilities to specific toxicities and adverse drug reactions. MiRNAs in particular have been shown to be important regulators in cancer and other diseases and show promise as predictive biomarkers for diagnosis and prognosis. In this study, we characterized the global kidney miRNA expression profile in untreated male and female F344 rats throughout the life span. These findings were correlated with sex-specific susceptibilities to adverse renal events, such as male-biased renal fibrosis and inflammation in old age.

Methods

Kidney miRNA expression was examined in F344 rats at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age in both sexes using Agilent miRNA microarrays. Differential expression was determined using filtering criteria of ≥1.5 fold change and ANOVA or pairwise t-test (FDR <5%) to determine significant age and sex effects, respectively. Pathway analysis software was used to investigate the possible roles of these target genes in age- and sex-specific differences.

Results

Three hundred eleven miRNAs were found to be expressed in at least one age and sex. Filtering criteria revealed 174 differentially expressed miRNAs in the kidney; 173 and 34 miRNAs exhibiting age and sex effects, respectively. Principal component analysis revealed age effects predominated over sex effects, with 2-week miRNA expression being much different from other ages. No significant sexually dimorphic miRNA expression was observed from 5 to 8 weeks, while the most differential expression (13 miRNAs) was observed at 21 weeks. Potential target genes of these differentially expressed miRNAs were identified.

Conclusions

The expression of 56% of detected renal miRNAs was found to vary significantly with age and/or sex during the life span of F344 rats. Pathway analysis suggested that 2-week-expressed miRNAs may be related to organ and cellular development and proliferation pathways. Male-biased miRNA expression at older ages correlated with male-biased renal fibrosis and mononuclear cell infiltration. These miRNAs showed high representation in renal inflammation and nephritis pathways, and included miR-214, miR-130b, miR-150, miR-223, miR-142-5p, miR-185, and miR-296*. Analysis of kidney miRNA expression throughout the rat life span will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s13293-014-0019-1) contains supplementary material, which is available to authorized users.  相似文献   
107.
Potentilla fulgens root traditionally used as a folk remedy in Meghalaya, India. However, systematic evaluation of its anticancer efficacy was limited. We investigated the anticancer potentials of the various extracts prepared by partitioning of the methanol extract of the root with the aim to discover major contributing factors from the most effective fractions. Methanol extract of P. fulgens roots (PRE) was prepared by maceration which was subsequently fractionated into hexane, ethyl-acetate (EA) and n-butanol soluble fractions. Various assays (clonogenic assay, Flow cytometry analysis, western blot, semiquantitative RT-PCR and the level of endogenous glutathione) were used to evaluate different parameters, such as Cell survivability, PARP-1 proteolysis, expression pattern of anti-apoptotic and γ-glutamyl-cysteine synthetase heavy subunit (GCSC) genes in both MCF-7 and U87 cancer cell lines. Since the EA-fraction showed most efficient growth inhibitory effect, it was further purified and a total of nine compounds and some monomeric and dimeric flavan-3-ols were identified and characterized. Three compounds viz., epicatechin (EC), gallic acid (GA) and ursolic acid (UA) were taken on the basis of their higher yield and 10 μg/ml of each was mixed together. The concentration used in this study for PRE, EA- and Hex-fraction was 100 μg/ml, which was higher than the IC50 value. Apoptotic cell death in the PRE, EA-fraction and EC+GA+UA treated cancer cell cultures was significantly greater than in normal cells due to suppression of anti-apoptotic protein Bcl2 following treatment. Depletion of glutathione by downregulating GCSC was also observed. Induction of apoptosis and lowering the level of glutathione are considered to be positive activity for an anticancer agent. Therefore, modulation of GSH concentration in tumor cells by PRE and its EA-fraction opened up the possibility of a new therapeutic approach because these plant products are not harmful to normal cells and may regulate the tumor cellular response to different anticancer treatments. Thus, it would be interesting to examine efficacy of these plant products or EA-fraction in human cancer treatment.  相似文献   
108.
The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste) salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva.  相似文献   
109.
Developing an understanding of protein misfolding processes presents a crucial challenge for unlocking the mysteries of human disease. In this article, we present our observations of β-sheet-rich misfolded states on a number of protein dynamical landscapes investigated through molecular dynamics simulation and Markov state models. We employ a nonequilibrium statistical mechanical theory to identify the glassy states in a protein’s dynamics, and we discuss the nonnative, β-sheet-rich states that play a distinct role in the slowest dynamics within seven protein folding systems. We highlight the fundamental similarity between these states and the amyloid structures responsible for many neurodegenerative diseases, and we discuss potential consequences for mechanisms of protein aggregation and intermolecular amyloid formation.  相似文献   
110.
Signal transduction is regulated by the lateral segregation of proteins into nanodomains on the plasma membrane. However, the molecular mechanisms that regulate the lateral segregation of cell surface receptors, such as receptor tyrosine kinases, upon ligand binding are unresolved. Here we used high-resolution spatial mapping to investigate the plasma membrane nanoscale organization of the epidermal growth factor (EGF) receptor (EGFR). Our data demonstrate that in serum-starved cells, the EGFR exists in preformed, cholesterol-dependent, actin-independent nanoclusters. Following stimulation with EGF, the number and size of EGFR nanoclusters increase in a time-dependent manner. Our data show that the formation of EGFR nanoclusters requires receptor tyrosine kinase activity. Critically, we show for the first time that production of phosphatidic acid by phospholipase D2 (PLD2) is essential for ligand-induced EGFR nanocluster formation. In accordance with its crucial role in regulating EGFR nanocluster formation, we demonstrate that modulating PLD2 activity tunes the degree of EGFR nanocluster formation and mitogen-activated protein kinase signal output. Together, these data show that EGFR activation drives the formation of signaling domains by regulating the production of critical second-messenger lipids and modifying the local membrane lipid environment.The epidermal growth factor (EGF) receptor (EGFR) is a single transmembrane domain protein that possesses intrinsic tyrosine kinase (TK) activity. Ligand binding to the extracellular domain induces conformational changes that promote activation of the intracellular TK domain. The kinase domain then autophosphorylates a number of tyrosine residues in the C-terminal region of the protein, creating docking sites for adapter and effector proteins. Thus, the active form of the EGFR could reasonably be expected to be a dimer. However, recent studies using single-molecule imaging, image correlation spectroscopy (ICS), fluorescence correlation spectroscopy (FCS), and immunoelectron microscopy (immuno-EM) show that the EGFR is, in fact, nonrandomly organized into oligomers on the plasma membrane (6, 7, 16, 34, 44). ICS measurements estimate that, in the absence of ligand, there are, on average, 2.2 EGFRs per cluster, which increases to 3.7 receptors per cluster upon stimulation (7). Single-molecule tracking experiments also suggest that unliganded EGFRs continually fluctuate between monomers and dimers that are primed for activation (5). Furthermore, the organization of the EGFR is dynamic and clustering of the EGFR increases over time after EGF stimulation (7, 16). However, neither the precise role of EGFR oligomerization in signal transduction nor the mechanisms driving oligomer formation have been resolved.The organization of the EGFR into oligomers is dependent upon cellular cholesterol. Saffarian et al., using FCS, estimated that 70% of EGFRs exist as monomers, 20% as dimers, and 10% as oligomers (34). However, depletion of cholesterol decreases the percentage of monomeric receptors and increases the proportion of oligomeric receptors. Cholesterol depletion and actin depolymerization also alter the diffusion coefficient of the EGFR and the confinement area size (22). The finding that EGFR membrane organization is dependent upon cholesterol is of particular interest because a number of studies have demonstrated that EGFR activity is negatively regulated by cholesterol (4, 23, 28, 32).Phospholipase D2 (PLD2) hydrolyzes phosphatidylcholine (PC) to produce choline and phosphatidic acid (PA). PLD2 is localized to the plasma membrane (10), associates with the EGFR (39), and is rapidly activated upon EGF stimulation, leading to increased production of PA (15, 38, 39). A number of lines of evidence suggest that PA is an important mediator of EGFR action. First, exogenous PA is mitogenic when incubated with cells (17, 19, 42, 45). Second, direct interaction with membrane PA regulates the activity of a number of components downstream of the EGFR, including Sos (47) and Raf (12, 13, 30, 31).In the current study, we used high-resolution spatial analysis techniques to investigate EGFR plasma membrane organization. Using these approaches, we identified PA as the key molecular component responsible for driving EGFR nanocluster formation in response to EGF binding and demonstrated that the level of PLD2 activity regulates the duration of mitogen-activated protein kinase (MAPK) signal output.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号