首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   35篇
  2021年   5篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   5篇
  2012年   5篇
  2011年   13篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   8篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   6篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   7篇
  1998年   1篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1978年   1篇
排序方式: 共有145条查询结果,搜索用时 359 毫秒
21.
The phytochromes are a family of red/far-red light absorbing photoreceptors that control plant developmental and metabolic processes in response to changes in the light environment. We report here the overexpression of Arabidopsis thaliana PHYTOCHROME A (PHYA) gene in a commercially important indica rice variety (Oryza sativa L. Pusa Basmati-1). The expression of the transgene was driven by the light-regulated and tissue-specific rice rbcS promoter. Several independent homozygous sixth generation (T5) transgenic lines were characterized and shown to accumulate relatively high levels of PHYA protein in the light. Under both far-red and red light, PHYA-overexpressing lines showed inhibition of the coleoptile extension in comparison to non-transgenic seedlings. Furthermore, compared with non-transgenic rice plants, mature transgenic plants showed significant reduction in plant height, internode length and internode diameter (including differences in cell size and number), and produced an increased number of panicles per plant. Under greenhouse conditions, rice grain yield was 6–21% higher in three PHYA-overexpressing lines than in non-transgenic plants. These results demonstrate the potential of manipulating light signal-transduction pathways to minimize the problems of lodging in basmati/aromatic rice and to enhance grain productivity.  相似文献   
22.
The unique photochromic absorption behavior of phytochromes (Phys) depends on numerous reversible interactions between the bilin chromophore and the associated polypeptide. To help define these dynamic interactions, we determined by NMR spectroscopy the first solution structure of the chromophore-binding cGMP phosphodiesterase/adenylcyclase/FhlA (GAF) domain from a cyanobacterial Phy assembled with phycocyanobilin (PCB). The three-dimensional NMR structure of Synechococcus OS-B′ cyanobacterial Phy 1 in the red-light-absorbing state of Phy (Pr) revealed that PCB is bound to Cys138 of the GAF domain via the A-ring ethylidene side chain and is buried within the GAF domain in a ZZZsyn,syn,anti configuration. The D ring of the chromophore sits within a hydrophobic pocket and is tilted by approximately 80° relative to the B/C rings by contacts with Lys52 and His169. The solution structure revealed remarkable flexibility for PCB and several adjacent amino acids, indicating that the Pr chromophore has more freedom in the binding pocket than anticipated. The propionic acid side chains of rings B and C and Arg101 and Arg133 nearby are especially mobile and can assume several distinct and energetically favorable conformations. Mutagenic studies on these arginines, which are conserved within the Phy superfamily, revealed that they have opposing roles, with Arg101 and Arg133 helping stabilize and destabilize the far-red-light-absorbing state of Phy (Pfr), respectively. Given the fact that the Synechococcus OS-B′ GAF domain can, by itself, complete the Pr → Pfr photocycle, it should now be possible to determine the solution structure of the Pfr chromophore and surrounding pocket using this Pr structure as a framework.  相似文献   
23.
Autophagy is an important intracellular recycling system in eukaryotes that utilizes small vesicles to traffic cytosolic proteins and organelles to the vacuole for breakdown. Vesicle formation requires the conjugation of the two ubiquitin-fold polypeptides ATG8 and ATG12 to phosphatidylethanolamine and the ATG5 protein, respectively. Using Arabidopsis thaliana mutants affecting the ATG5 target or the ATG7 E1 required to initiate ligation of both ATG8 and ATG12, we previously showed that the ATG8/12 conjugation pathways together are important when plants encounter nutrient stress and during senescence. To characterize the ATG12 conjugation pathway specifically, we characterized a null mutant eliminating the E2-conjugating enzyme ATG10 that, similar to plants missing ATG5 or ATG7, cannot form the ATG12-ATG5 conjugate. atg10-1 plants are hypersensitive to nitrogen and carbon starvation and initiate senescence and programmed cell death (PCD) more quickly than wild type, as indicated by elevated levels of senescence- and PCD-related mRNAs and proteins during carbon starvation. As detected with a GFP-ATG8a reporter, atg10-1 and atg5-1 mutant plants fail to accumulate autophagic bodies inside the vacuole. These results indicate that ATG10 is essential for ATG12 conjugation and that the ATG12-ATG5 conjugate is necessary to form autophagic vesicles and for the timely progression of senescence and PCD in plants.  相似文献   
24.
Ethylene biosynthesis is directed by a family of 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS) that convert S -adenosyl- l -methionine to the immediate precursor ACC. Members of the type-2 ACS subfamily are strongly regulated by proteolysis with various signals stabilizing the proteins to increase ethylene production. In Arabidopsis, this turnover is mediated by the ubiquitin/26 S proteasome system, using a broad complex/tramtrack/bric-a-brac (BTB) E3 assembled with the ETHYLENE OVERPRODUCER 1 (ETO1) BTB protein for target recognition. Here, we show that two Arabidopsis BTB proteins closely related to ETO1, designated ETO1-like (EOL1) and EOL2, also negatively regulate ethylene synthesis via their ability to target ACSs for breakdown. Like ETO1, EOL1 interacts with type-2 ACSs (ACS4, ACS5 and ACS9), but not with type-1 or type-3 ACSs, or with type-2 ACS mutants that stabilize the corresponding proteins in planta . Whereas single and double mutants affecting EOL1 and EOL2 do not show an ethylene-related phenotype, they exaggerate the effects caused by inactivation of ETO1 , and further increase ethylene production and the accumulation of ACS5 in eto1 plants. The triple eto1 eol1 eol2 mutant phenotype can be effectively rescued by the ACS inhibitor aminoethoxyvinylglycine, and by silver, which antagonizes ethylene perception. Together with hypocotyl growth assays showing that the sensitivity and response kinetics to ethylene are normal, it appears that ethylene synthesis, but not signaling, is compromised in the triple mutant. Collectively, the data indicate that the Arabidopsis BTB E3s assembled with ETO1, EOL1 and EOL2 work together to negatively regulate ethylene synthesis by directing the degradation of type-2 ACS proteins.  相似文献   
25.
Protein ubiquitylation is a central regulatory mechanism that controls numerous processes in plants, including hormone signaling, developmental progression, responses to biotic and abiotic challenges, protein trafficking and chromatin structure. Despite data implicating thousands of plant proteins as targets, so far only a few have been conclusively shown to be ubiquitylated in planta . Here we describe a method to isolate ubiquitin–protein conjugates from Arabidopsis that exploits a stable transgenic line expressing a synthetic poly- UBQ gene encoding ubiquitin (Ub) monomers N-terminally tagged with hexahistidine. Following sequential enrichment by Ub-affinity and nickel chelate-affinity chromatography, the ubiquitylated proteins were trypsinized, separated by two-dimensional liquid chromatography, and analyzed by mass spectrometry. Our list of 54 non-redundant targets, expressed by as many as 90 possible isoforms, included those predicted by genetic studies to be ubiquitylated in plants (EIN3 and JAZ6) or shown to be ubiquitylated in other eukaryotes (ribosomal subunits, elongation factor 1α, histone H1, HSP70 and CDC48), as well as candidates whose control by the Ub/26S proteasome system is not yet appreciated. Ub attachment site(s) were resolved for a subset of these proteins, but surprisingly little sequence consensus was detected, implying that specific residues surrounding the modified lysine are not important determinants for ubiquitylation. We also identified six of the seven available lysine residues on Ub itself as Ub attachment sites, together with evidence for a branched mixed-linkage chain, suggesting that the topologies of Ub chains can be highly complex in plants. Taken together, our method provides a widely applicable strategy to define ubiquitylation in any tissue of intact plants exposed to a wide range of conditions.  相似文献   
26.
Phytochromes are a collection of bilin-containing photoreceptors that regulate a diverse array of processes in microorganisms and plants through photoconversion between two stable states, a red light-absorbing Pr form, and a far red light-absorbing Pfr form. Recently, a novel set of phytochrome-like chromoproteins was discovered in cyanobacteria, designated here as cyanochromes, that instead photoconvert between stable blue and green light-absorbing forms Pb and Pg, respectively. Here, we show that the distinctive absorption properties of cyanochromes are facilitated through the binding of phycocyanobilin via two stable cysteine-based thioether linkages within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. Absorption, resonance Raman and infrared spectroscopy, and molecular modeling of the Te-PixJ GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA) domain assembled with phycocyanobilin are consistent with attachments to the C31 carbon of the ethylidene side chain and the C4 or C5 carbons in the A–B methine bridge to generate a double thioether-linked phycoviolobilin-type chromophore. These spectroscopic methods combined with NMR data show that the bilin is fully protonated in the Pb and Pg states and that numerous conformation changes occur during Pb → Pg photoconversion. Also identified were a number of photochromically inactive mutants with strong yellow or red fluorescence that may be useful for fluorescence-based cell biological assays. Phylogenetic analyses detected cyanochromes capable of different signaling outputs in a wide range of cyanobacterial species. One unusual case is the Synechocystis cyanochrome Etr1 that also binds ethylene, suggesting that it works as a hybrid receptor to simultaneously integrate light and hormone signals.Phytochromes (Phys)3 comprise a large and diverse superfamily of photoreceptors that regulate a wide range of physiological responses in plants, fungi, bacteria, and cyanobacteria (13). They are unique among photoreceptors by being able to photoconvert between two stable states, a red light-absorbing Pr form that is typically the dark-adapted and biologically inactive conformer and a far-red light-absorbing Pfr form that requires light for its production and is typically the biologically active conformer. By interconverting between Pr and Pfr, Phys act as light-regulated switches in controlling processes ranging from phototaxis and pigmentation in bacteria to seed germination, photomorphogenesis, and flowering time in higher plants.Light absorption by Phys is directed by a bilin (or linear tetrapyrrole) chromophore produced by the oxidative cleavage of heme. Although bacterial and fungal Phys use the immediate cleavage product biliverdin (BV), cyanobacterial and higher plant Phys use phycocyanobilin (PCB) and phytochromobilin, respectively, produced by enzymatic reduction of BV (1, 2). The bilin is then covalently bound autocatalytically to the photosensory unit of the apoprotein, which typically contains a sequence of Per/Arndt/Sim (PAS), cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF), and Phy-associated (PHY) domains. Intimate contact between the bilin and surrounding protein residues then generates the unique photochromic properties of Phys. Recent three-dimensional structures of the Pr form of several bacterial Phys (BphPs) and two cyanobacterial Phys (Cphs) have shown that the bilin is deeply buried within the GAF domain in a ZZZssa configuration and that the connection between the GAF and PAS domains is stabilized by a rare figure-of-eight knot involving the region upstream of the PAS domain being lassoed by a conserved loop within the GAF domain (49). Although the structure of Pfr remains unsolved, various physicochemical studies have proposed that photoconversion involves a rotation of one of the three methine bridges between the pyrrole rings (1, 1014). This rotation then induces much slower thermally driven movements of the protein to initiate signal transduction.In microorganisms, Pfr can activate a variety of signaling systems using output motifs directly appended to the C-terminal end of the photosensory region. The most prevalent are histidine kinase domains that then begin specific two-component phosphorelays (3, 15, 16). Although the output of plant Phys remains unclear, the presence of a C-terminal HK-related domain suggests that they also work as light-regulated protein kinases (17).In addition to the canonical Phys, it has become apparent through phylogenetic and biochemical studies that a heterogeneous collection of Phy-like photoreceptors exists (e.g. Refs. 3 and 18). These include Phys that prefer Pfr as the dark-adapted state (7, 19, 20), Phys that photoconvert from Pr to shorter wavelength-absorbing “near red” or Pnr forms (6, 21), and Phy-like photoreceptors that bind bilins but instead photoconvert between forms with maximal absorption other than red and far-red light (2225). Often these Phy-like sequences are missing key residues or domains common among canonical Phys, suggesting that they employ novel bilins as chromophores, bind the bilin in different architectures, and/or use distinct photochemistries.One subclass of novel Phy-like photoreceptors present in a number of cyanobacteria, which we have designated cyanochromes (or Cycs) to better distinguish them from Cphs, is exemplified by Synechocystis sp. PCC6803 (Syn) PixJ (or TaxD1, locus sll0041) and its relatives. Syn-PixJ was discovered based on its involvement in blue light-mediated phototaxis in this mesophilic cyanobacterium (26, 27) with its close homolog Te-PixJ (locus tll0569) then found in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 by sequence similarity (28). Like Cphs, the cyanochromes tested thus far covalently bind PCB but then generate photoreceptors that convert between blue and green light-absorbing forms designated Pb and Pg, respectively (22, 24, 29). Subsequent studies proposed that PCB is converted to phycoviolobilin (PVB) upon attachment to the apoprotein (30). PVB differs from PCB by having a methylene instead of a methine bridge between the A and B pyrrole rings, which blue-shifts the absorption of the chromophore by shortening the π-conjugation system. Phototransformation of Pb to Pg could then occur by a mechanism similar to Phys.How Te-PixJ and related cyanochromes bind PCB to generate more blue-shifted PVB-type chromophores remains unclear. Like Cphs, two cyanochromes examples link PCB via a thioether linkage between a cysteine in the Cyc-GAF domain and the C31 carbon of the ethylidene side chain of ring A (24, 28). Additionally, loss of the C4C5 double bond is necessary to generate PVB. One model by Ishizuka et al. (30) from studies with Te-PixJ proposed that the double bond moves from the C4-C5 position to the C2-C3 position by an autoisomerase activity intrinsic to the GAF domain. A more recent model by Rockwell et al. (24) using another Syn-PixJ relative in T. elongatus, Tlr0924, invoked the possibility of a second cysteine that also participates in PCB ligation. This cysteine was proposed to bind the bilin at the C10 position via a reversible thioether linkage. In the dark-adapted Pb state, the second linkage would then be formed to generate a rubin-like chromophore attached to the bridge between the B and C pyrrole rings. This bond would then break upon photoconversion to generate the more π-conjugated green light-absorbing photoproduct Pg.In this report, we employed a number of physicochemical approaches to help resolve the unique chromophore architecture and photochemical properties of cyanochromes, using Te-PixJ as the example. By independently mutagenizing the cysteine that binds the A ring ethylidene (Cys-522 (22)) and that proposed by Rockwell et al. (24) to reversibly bind the bilin at a second site (Cys-494), we demonstrate that both residues form light-stable covalent adducts with a PVB-type chromophore. In addition, we employed various spectroscopic methods to show that the bound PVB is fully protonated as both Pb and Pg, that only one pyrrole ring is active during photoconversion, and that the polypeptide may undergo extensive remodeling as Pb converts to Pg. We identified a set of conserved amino acids in Te-PixJ important for cyanochrome photochemistry, including several that when substituted generate yellow or red fluorescent chromoproteins potentially useful for cell biological applications. Phylogenetic analyses show that cyanochromes are widespread among cyanobacteria with their closest relatives being members of the red/far-red light-absorbing Phy subfamily defined by the absence of the N-terminal PAS domain (31).  相似文献   
27.
Plant root development is mediated by the concerted action of the auxin and cytokinin phytohormones, with cytokinin serving as an antagonist of auxin transport. Here, we identify the AUXIN UP-REGULATED F-BOX PROTEIN1 (AUF1) and its potential paralog AUF2 as important positive modifiers of root elongation that tether auxin movements to cytokinin signaling in Arabidopsis (Arabidopsis thaliana). The AUF1 mRNA level in roots is strongly up-regulated by auxin but not by other phytohormones. Whereas the auf1 single and auf1 auf2 double mutant roots grow normally without exogenous auxin and respond similarly to the wild type upon auxin application, their growth is hypersensitive to auxin transport inhibitors, with the mutant roots also having reduced basipetal and acropetal auxin transport. The effects of auf1 on auxin movements may be mediated in part by the misexpression of several PIN-FORMED (PIN) auxin efflux proteins, which for PIN2 reduces its abundance on the plasma membrane of root cells. auf1 roots are also hypersensitive to cytokinin and have increased expression of several components of cytokinin signaling. Kinematic analyses of root growth and localization of the cyclin B mitotic marker showed that AUF1 does not affect root cell division but promotes cytokinin-mediated cell expansion in the elongation/differentiation zone. Epistasis analyses implicate the cytokinin regulator ARR1 or its effector(s) as the target of the SKP1-Cullin1-F Box (SCF) ubiquitin ligases assembled with AUF1/2. Given the wide distribution of AUF1/2-type proteins among land plants, we propose that SCF(AUF1/2) provides additional cross talk between auxin and cytokinin, which modifies auxin distribution and ultimately root elongation.  相似文献   
28.
29.
Autophagy is essential for nutrient recycling and intracellular housekeeping in plants by removing unwanted cytoplasmic constituents, aggregated polypeptides, and damaged organelles. The autophagy-related (ATG)1-ATG13 kinase complex is an upstream regulator that integrates metabolic and environmental cues into a coherent autophagic response directed by other ATG components. Our recent studies with Arabidopsis thaliana revealed that ATG11, an accessory protein of the ATG1-ATG13 complex, acts as a scaffold that connects the complex to autophagic membranes. We showed that ATG11 encourages proper behavior of the ATG1-ATG13 complex and faithful delivery of autophagic vesicles to the vacuole, likely through its interaction with ATG8. In addition, we demonstrated that Arabidopsis mitochondria are degraded during senescence via an autophagic route that requires ATG11 and other ATG components. Together, ATG11 appears to be an important modulator of the ATG1-ATG13 complex and a multifunctional scaffold required for bulk autophagy and the selective clearance of mitochondria.  相似文献   
30.
The occurrence of phytochrome-mediated highirradiance responses (HIR), previously characterised largely in dicotyledonous plants, was investigated in Triticum aestivum L., Zea mays L., Lolium multiflorum Lam. and in both wild-type Oryza sativa L. and in transgenic plants overexpressing oat phytochrome A under the control of a 35S promoter. Coleoptile growth was promoted (maize, ryegrass) or inhibited (wild-type rice) by continuous far-red light (FRc). However, at equal fluences, hourly pulses of far-red light (FRp) were equally effective, indicating that the growth responses to FRc were not true HIR. In contrast, in maize and rice, FRc increased anthocyanin content in the coleoptile in a fluence-rate dependent manner. This response was a true HIR as FRp had reduced effects. In maize, anthocyanin levels were significantly higher under FRc than under continuous red light. In rice, overexpression of phytochrome A increased the inhibition of coleoptile growth and the levels of anthocyanin under FRc but not under FRp or under continuous red light. The effect of FRc was fluence-rate dependent. In light-grown rice, overexpression of phytochrome A reduced leaf-sheath length, impaired the response to supplementary far-red light, but did not affect the response to canopy shade-light. In grasses, typical HIR, i.e. fluence-rate dependent responses showing reciprocity failure, can be induced by FRc. Under FRc, overexpressed phytochrome A operates through this action mode in transgenic rice.Abbreviations FR far-red light - FRc continuous far-red light - FRp pulses of far-red light - HIR high-irradiance responses - LFR low-fluence responses - OPHYA transgenic rice overexpressing oat phytochrome A - Pfr far-red light-absorbing form of phytochrome - phyA phytochrome A - R red light - Rc continuous red light - VLFR very low-fluence responses - WT wildtype We thank Marcelo J. Yanovsky for his help with the photographs and Professor Rodolfo A. Sanchez for providing a reprint of the paper by P.J.A.L. de Lint. This work was supported by grants from UBA (AG041) and Fundacion Antorchas (A-13218/1-15) to J.J.C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号