全文获取类型
收费全文 | 62篇 |
免费 | 3篇 |
国内免费 | 1篇 |
专业分类
66篇 |
出版年
2022年 | 1篇 |
2021年 | 1篇 |
2019年 | 2篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 1篇 |
2015年 | 3篇 |
2014年 | 8篇 |
2013年 | 5篇 |
2012年 | 2篇 |
2011年 | 2篇 |
2010年 | 3篇 |
2009年 | 3篇 |
2008年 | 1篇 |
2007年 | 2篇 |
2006年 | 1篇 |
2004年 | 2篇 |
2003年 | 2篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1989年 | 2篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 1篇 |
排序方式: 共有66条查询结果,搜索用时 15 毫秒
41.
42.
Hanna?B?Kastein Vinoth?AK?Kumar Sripathi?Kandula Sabine?SchmidtEmail author 《Frontiers in zoology》2013,10(1):75
Introduction
Immediate responses towards emotional utterances in humans are determined by the acoustic structure and perceived relevance, i.e. salience, of the stimuli, and are controlled via a central feedback taking into account acoustic pre-experience. The present study explores whether the evaluation of stimulus salience in the acoustic communication of emotions is specifically human or has precursors in mammals. We created different pre-experiences by habituating bats (Megaderma lyra) to stimuli based on aggression, and response, calls from high or low intensity level agonistic interactions, respectively. Then we presented a test stimulus of opposite affect intensity of the same call type. We compared the modulation of response behaviour by affect intensity between the reciprocal experiments.Results
For aggression call stimuli, the bats responded to the dishabituation stimuli independent of affect intensity, emphasising the attention-grabbing function of this call type. For response call stimuli, the bats responded to a high affect intensity test stimulus after experiencing stimuli of low affect intensity, but transferred habituation to a low affect intensity test stimulus after experiencing stimuli of high affect intensity. This transfer of habituation was not due to over-habituation as the bats responded to a frequency-shifted control stimulus. A direct comparison confirmed the asymmetric response behaviour in the reciprocal experiments.Conclusions
Thus, the present study provides not only evidence for a discrimination of affect intensity, but also for an evaluation of stimulus salience, suggesting that basic assessment mechanisms involved in the perception of emotion are an ancestral trait in mammals.43.
Eveline Jacques Kathleen Hectors Yves Guisez Els Prinsen Marcel AK Jansen Jean-Pierre Verbelen Kris Vissenberg 《Plant signaling & behavior》2011,6(1):83-85
Upon chronic UV treatment pavement cell expansion in Arabidopsis leaves is reduced, implying alterations in symplastic and apoplastic properties of the epidermal cells. In this study, the effect of UV radiation on microtubule patterning is analysed, as microtubules are thought to serve as guiding rails for the cellulose synthase complexes depositing cellulose microfibrils. Together with hemicelluloses, these microfibrils are regarded as the load-bearing components of the cell wall. Leaves of transgenic plants with fluorescently tagged microtubules (GFP-TUA6) were as responsive to UV as wild type plants. Despite the UV-induced reduction in cell elongation, confocal microscopy revealed that cellular microtubule arrangements were seemingly not affected by the UV treatments. This indicates an unaltered deposition of cellulose microfibrils in the presence of UV radiation. Therefore, we surmise that the reduction in cell expansion in UV-treated leaves is most probably due to changes in cell wall loosening and/or turgor pressure.Key words: arabidopsis, cell expansion, GFP-TUA6, leaf development, microtubule cytoskeleton, UV radiationPhotosynthetic functions such as solar light capture and carbon fixation are highly evolved features of plant leaves. To fulfil these functions in an optimal way, leaf development needs to be tuned to environmental conditions. Leaves are continuously exposed and subjected to environmental influences, which serve as co-regulators of leaf and plant development.1 This ability of plants to adapt, secures the plant''s survival, even under non-optimal conditions. An example of a regulatory environmental parameter is solar light, indispensable for photosynthesis but potentially causing photoinhibition and/or UV-radiation stress. The highly energetic ultraviolet B (UV-B) rays of short wavelengths (280–315 nm) can both cause damage, as well as induce a range of specific metabolic and morphogenic plant responses. It was reported before that exposure to low dose UV radiation reduces Arabidopsis leaf size due to a decreased cell size.2 Expansion of leaf epidermal cells of Arabidopsis thaliana is the combined action of promotion and restriction of growth, resulting in the typical irregular sinuous pavement cells. It has been postulated that cellulose microfibrils are responsible for generating a force opposing isotropic expansion by creating neck regions in between outgrowing lobes.3 As the microtubule cytoskeleton is believed to serve as guiding rails for the cellulose synthase complexes (CESAs),4 the deposition of the cellulose fibrils is intimately linked to the cortical microtubule arrangement. We have studied the UV-effect on microtubule organisation in leaf epidermal cells whose expansion had decreased upon this UV radiation. Microtubules in the adaxial pavement cells of the fourth leaf were monitored on several successive days in a transgenic line containing GFP fused to tubulin A6.5 The chronic UV treatment was started on day 0 when the plants were 2 weeks old, using UV exposure conditions as described in reference 2. First the responsiveness of the GFP-TUA6 plants to UV radiation was evaluated. Similar to wild type (WT) plants,2 the GFP-TUA6 plants had smaller leaves following 8 days of UV treatment (t-test, p < 0.01) (Fig. 1). This was caused by a significant reduction in the generalized cell area average of all measured cells, irrespective of the location within the leaf (Fig. 1; t-test, p < 0.01). In more detail, the average cell area within the base, middle and top zones of the GFP-TUA6 leaf was systematically lower in UV-treated leaves from 8 days after the treatment started onwards (data not shown).Open in a separate windowFigure 1Effect of UV radiation on leaf and cell area after different days of UV radiation. Open asterisks indicate a statistically significant difference in leaf area between UV-treated and control plants, black asterisks indicate statistically significant difference in cell area (t-test, *p < 0.05, **p < 0.01, ***p < 0.001). Error bars indicate the standard error for five different leaves at all measured time-points and 600, 170 and 180 cells at day 0, 8 and 12 respectively.As GFP-TUA6 leaves were as responsive to UV radiation as wild type leaves, confocal microscopy was used to visualize the organisation of the cortical microtubules facing the outer periclinal wall of the adaxial epidermis. No clear difference in microtubule (re)organization could be detected during the development of pavement cells, and throughout the UV treatment period. As shown in Figure 2 at day 2, pavement cells with comparable areas are similarly shaped in control and UV-irradiated plants and contain similar microtubule arrangements (Fig. 2 and marked cells). This means that microtubule organization is not directly affected by the UV exposure and that shape development proceeds in an analoguous manner as under control conditions. This lack of alteration in the microtubule arrangement can be observed for cells at the leaf tip, which were already in the process of lobe formation at the start of the exposure period, as well as for cells at the leaf base. Under our growth conditions, and in the monitored leaf number 4, cell proliferation still took place in this part of the leaf and lobes only started to appear on the cell surface. As microtubules are linked to the deposition of cellulose microfibrils, it can be assumed that no alterations in cellulose deposition occur upon UV treatment either. We can therefore conclude that the process of lobe formation and microtubule patterning is not impeded and that only the extent of cell expansion is restricted upon UV exposure.Open in a separate windowFigure 2Microtubule pattern in control and UV-exposed leaves visualized using GFP-TUA6 and confocal microscopy. Both images are from cells at the mid zone of the fourth leaf at day 2. Microtubules are similarly arranged in equally shaped and sized cells of control and UV-exposed leaves. The marked cells show a pattern whereby the tubules are centred in the neck regions between two outgrowing lobes.According to the Lockhart equation,6 cell (wall) growth is modulated by wall biomechanics and turgor pressure. Concerning turgor pressure, no clear differences in this factor between UV-exposed and control plants of Lactuca sativa L.7 and Pisum sativum8 could be observed, reinforcing the idea that especially the modulation of cell wall properties is the main factor causing the observed UV-induced reduction in cell expansion. Some reports indicate differential expression of wall loosening enzymes like expansins or xyloglucan endotransglycosylase/hydrolases (XTHs),9,10 or cell wall strengthening enzymes as particular peroxidases7 after UV exposure. Another key event could involve UV-mediated changes in the phenylpropanoid pathway, which may cause changes in the lignin biosynthesis. As shown by the literature11–14 lignin may well be an important modulator of cell wall architecture in Arabidopsis and therefore alterations in lignin synthesis could form the basis for morphological modifications. Further research on the cell wall properties of UV-treated plants may resolve this uncertainty.As a general conclusion we can state that the patterning of microtubules is not altered, but that alterations in cell wall composition or arrangements are the most plausible candidates for the observed reduction in pavement cell expansion upon chronic UV treatment. 相似文献
44.
The instantaneous state of a neural network consists of both the degree of excitation of each neuron the network is composed of and positions of impulses in communication lines between the neurons. In neurophysiological experiments, the neuronal firing moments are registered, but not the state of communication lines. But future spiking moments depend essentially on the past positions of impulses in the lines. This suggests, that the sequence of intervals between firing moments (inter-spike intervals, ISIs) in the network could be non-Markovian. 相似文献
45.
A K Vidybida 《Journal of theoretical biology》1991,152(2):159-164
High selectivity (specificity) and sensitivity to natural or artificial stimuli which are normally observed for biological systems can be realized in an ensemble composed of many co-operatively connected primary receptors. The co-operative interaction results in the formation of several stable states and a switching from one state to another is performed in a threshold manner. When any noise is absent the ensemble with a threshold can secure as high a selectivity and sensitivity as is desired. The presence of noise sets limits on the possible informational quality of a system because spontaneous switchings will occur. The question: What advantage as regards selectivity and sensitivity can a co-operative system with a threshold have is considered quantitatively as an example for a bistable chemical system. As a result it is established that a co-operative system may have much higher selectivity and sensitivity than its individual primary receptors. 相似文献
46.
47.
48.
49.
Vidybida AK 《Biological cybernetics》1999,81(5-6):469-473
The discriminating ability (selectivity) of the chemoreceptor neuron is compared with that of its receptor proteins. The
process of neuronal triggering is expected to be cooperative and threshold type in a sense that the neuron fires a spike if
and only if the number of receptor proteins which are bound with odor molecules is above a definite threshold. The binomial
distribution is utilized to estimate the firing probability if a definite odor is applied. It is established that a chemoreceptor
neuron can have a much higher selectivity than its individual receptor proteins, provided that the chemical stimuli are presented
at low concentrations. A possibility for the above mechanism to be valid in other sensory systems is discussed.
Received: 20 July 1998 / Accepted in revised form: 30 April 1999 相似文献
50.
Plantago exhibit great deal of differences in the breeding system. The reproductive effort calculated on the basis of, (i) dry biomass
of foliar and floral parts and (ii) seed output-weight (mg) per unit leaf area (cm2), exhibits relation with breeding system. The predominantly inbreeding taxa invest higher reproductive effort compared to
their outbreeding allies. In terms of sex allocation strategies, the outbreeding species like P. lanceolata, P. lagopus invest more to the development of floral features and to male functions. On the contrary, inbreeding species such as P. patagonica, P. drummondii, and P. ovata invest greater resources to the female function.
Received 13 April 1998/ Accepted in revised form 6 November 1998 相似文献