首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   967篇
  免费   58篇
  国内免费   1篇
  2022年   9篇
  2021年   26篇
  2020年   7篇
  2019年   8篇
  2018年   15篇
  2017年   16篇
  2016年   26篇
  2015年   38篇
  2014年   35篇
  2013年   55篇
  2012年   62篇
  2011年   81篇
  2010年   43篇
  2009年   38篇
  2008年   55篇
  2007年   33篇
  2006年   33篇
  2005年   39篇
  2004年   46篇
  2003年   20篇
  2002年   29篇
  2001年   19篇
  2000年   15篇
  1999年   9篇
  1997年   12篇
  1996年   7篇
  1992年   8篇
  1991年   6篇
  1990年   9篇
  1989年   7篇
  1988年   13篇
  1987年   7篇
  1986年   8篇
  1985年   11篇
  1984年   11篇
  1983年   9篇
  1982年   6篇
  1981年   15篇
  1980年   15篇
  1979年   6篇
  1978年   13篇
  1977年   9篇
  1976年   13篇
  1975年   10篇
  1974年   7篇
  1973年   10篇
  1971年   8篇
  1970年   8篇
  1968年   6篇
  1966年   6篇
排序方式: 共有1026条查询结果,搜索用时 31 毫秒
41.
Tapping panel dryness (TPD) syndrome affecting rubber tree (Hevea brasiliensis) is known to reduce natural latex production. Its aetiology remains ambiguous despite long years of research. A low molecular weight RNA similar to viroid RNA was isolated from TPD-affected samples of rubber trees. In the present study, a modified return-polyacrylamide gel electrophoresis procedure was standardised. The viroid-like low molecular weight (LMW) RNA was found associated with leaf, bark and root tissues and rubber seedlings. The technique was employed to detect LMW RNA in different clones of rubber planted in different locations and in bud-grafted plants. The LMW RNA isolated from TPD-affected trees was found infectious on seedlings of tomato cv Pusa Ruby. The LMW RNA was reisolated from symptomatic tomato leaves but not from control plants. This is for the first time that a biotic agent, a viroid RNA, is found consistently associated with the syndrome. The technology developed can be useful to demonstrate the onset of TPD in untapped trees in the absence of other methods such as nucleic acid hybridisation.  相似文献   
42.
Epilepsy prevails to be a neurological disorder in anticipation of safer drugs with enhanced anticonvulsant efficacy as presently available drugs fails to offer adequate control of epileptic seizures in about one-third of patients. The objective of this study was to evaluate the effect of Trichosanthes tricuspidata methanolic extract (TTME) against epilepsy mediated oxidative stress in pilocarpine induced mice. Intraperitonial administration of pilocarpine (85 mg/kg) induced seizure in mice was assessed by behavior observations, which is significantly (p < 0.05) reduced by TTME (100 and 200 mg/kg; i.p) in a dose dependant manner, similar to diazepam. Seizure was accompanied by significant increase in lipid peroxidation and the hippocampal nitrite content in pilocarpine group when compared with control. Moreover, the antioxidant enzymes superoxide dismutase, catalase and glutathione levels were decreased in pilocarpine administered groups. TTME administration attenuated oxidative damage as evident by decreased lipid oxidative damage and nitrite–nitrate content and restored the level of enzymatic antioxidant defenses in hippocampus. Involvement of free radicals during epilepsy is further confirmed by histopathological analysis which showed the loss of neuronal cells in hippocampus CA1 and CA3 pyramidal region. Our findings strongly support the hypothesis that TTME has anticonvulsant activity accompanied with the strong antioxidant potential plays a crucial role in reducing the oxidative stress produced by seizure.  相似文献   
43.
Neurofibrillary tangles, one of the hallmarks of Alzheimer disease (AD), are composed of paired helical filaments of abnormally hyperphosphorylated tau. The accumulation of these proteinaceous aggregates in AD correlates with synaptic loss and severity of dementia. Identifying the kinases involved in the pathological phosphorylation of tau may identify novel targets for AD. We used an unbiased approach to study the effect of 352 human kinases on their ability to phosphorylate tau at epitopes associated with AD. The kinases were overexpressed together with the longest form of human tau in human neuroblastoma cells. Levels of total and phosphorylated tau (epitopes Ser(P)-202, Thr(P)-231, Ser(P)-235, and Ser(P)-396/404) were measured in cell lysates using AlphaScreen assays. GSK3α, GSK3β, and MAPK13 were found to be the most active tau kinases, phosphorylating tau at all four epitopes. We further dissected the effects of GSK3α and GSK3β using pharmacological and genetic tools in hTau primary cortical neurons. Pathway analysis of the kinases identified in the screen suggested mechanisms for regulation of total tau levels and tau phosphorylation; for example, kinases that affect total tau levels do so by inhibition or activation of translation. A network fishing approach with the kinase hits identified other key molecules putatively involved in tau phosphorylation pathways, including the G-protein signaling through the Ras family of GTPases (MAPK family) pathway. The findings identify novel tau kinases and novel pathways that may be relevant for AD and other tauopathies.  相似文献   
44.
The febrile response is elicited by pyrogenic cytokines including IL-6 in response to microorganism infections and diseases in vertebrates. Mammalian HSF1, which senses elevations in temperature, negatively regulates the response by suppressing pyrogenic cytokine expression. We here showed that HSF3, an avian ortholog of mammalian HSF1, directly binds to and activates IL-6 during heat shock in chicken cells. Other components of the febrile response mechanism, such as IL-1β and ATF3, were also differently regulated in mammalian and chicken cells. These results suggest that the febrile response is exacerbated by a feed-forward circuit composed of the HSF3-IL-6 pathway in birds.  相似文献   
45.
A series of hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(B)L n ] (n = 1–4; B = PPh3, AsPh3 or Py) have been synthesized by reacting dibasic quadridentate Schiff base ligands H2L n (n = 1–4) with starting complexes [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py). The synthesized complexes were characterized using elemental and various spectral studies including UV–Vis, FT-IR, NMR (1H, 13C and 31P) and mass spectroscopy. An octahedral geometry was tentatively proposed for all the complexes based on the spectral data obtained. The experiments on antioxidant activity showed that the ruthenium(II) S-methylisothiosemicarbazone Schiff base complexes exhibited good scavenging activity against various free radicals (DPPH, OH and NO). The in vitro cytotoxicity of these complexes has been evaluated by MTT assay. The results demonstrate that the complexes have good anticancer activities against selected cancer cell line, human breast cancer cell line (MCF-7) and human skin carcinoma cell line (A431). The DNA cleavage studies showed that the complexes have better cleavage of pBR 322 DNA.  相似文献   
46.
NMR-based structure determination of a protein requires the assignment of resonances as indispensable first step. Even though heteronuclear through-bond correlation methods are available for that purpose, challenging situations arise in cases where the protein in question only yields samples of limited concentration and/or stability. Here we present a strategy based upon specific individual unlabeling of all 20 standard amino acids to complement standard NMR experiments and to achieve unambiguous backbone assignments for the fast precipitating 23 kDa catalytic domain of human aprataxin of which only incomplete standard NMR data sets could be obtained. Together with the validation of this approach utilizing the protein GB1 as a model, a comprehensive insight into metabolic interconversion ("scrambling”) of NH and CO groups in a standard Escherichia coli expression host is provided.  相似文献   
47.
48.
Prostaglandin D2 synthase (PGDS) catalyzes the isomerization of prostaglandin H2 (PGH2) to prostaglandin D2 (PGD2). PGD2 produced by hematopoietic prostaglandin D2 synthase (H-PGDS) in mast cells and Th2 cells is proposed to be a mediator of allergic and inflammatory responses. Consequently, inhibitors of H-PGDS represent potential therapeutic agents for the treatment of inflammatory diseases such as asthma. Due to the instability of the PGDS substrate PGH2, an in-vitro enzymatic assay is not feasible for large-scale screening of H-PGDS inhibitors. Herein, we report the development of a competition binding assay amenable to high-throughput screening (HTS) in a scintillation proximity assay (SPA) format. This assay was used to screen an in-house compound library of approximately 280,000 compounds for novel H-PGDS inhibitors. The hit rate of the H-PGDS primary screen was found to be 4%. This high hit rate suggests that the active site of H-PGDS can accommodate a large diversity of chemical scaffolds. For hit prioritization, these initial hits were rescreened at a lower concentration in SPA and tested in the LAD2 cell assay. 116 compounds were active in both assays with IC50s ranging from 6 to 807 nM in SPA and 82 nM to 10 μM in the LAD2 cell assay.  相似文献   
49.
The production of specific secondary metabolites in vitro can be improved through medium supplementation with secondary metabolite precursors, plant growth regulators (PGRs), and abiotic and biotic elicitors. In the present study, node and internode explants of Phyllanthus amarus and P. urinaria collected from Karkala region, Udupi District, Karnataka, India, were inoculated aseptically onto Murashige and Skoog (MS) medium for callus induction. Uniform calluses were inoculated onto MS medium fortified with one of two precursor’s cinnamic acid (CA) or phenylalanine (PA), or with naphthalene acetic acid (NAA). After 30 d of treatment, calluses from treatment and control groups were harvested and quantitatively analyzed for three lignans (phyllanthin, hypophyllanthin and niranthin) and an antioxidant (ellagic acid). Increased amounts of the lignans and ellagic acid were obtained through supplementation with CA, PA, and NAA, and higher ellagic acid was present at higher amounts than the three lignans. These results demonstrated that the Phyllanthus species collected from Karkala region (designated “Accessions3”) show substantial response to CA, PA, and NAA treatment and represent a potential source of donor plants with higher amounts of lignans and antioxidants. These plants can be cultivated on a large scale both in vitro and in vivo for production of important bioactive compounds. Production of these compounds can be further enhanced through induction of somaclonal variant plants with higher amounts of bioactive molecule production and through production of transgenic plants overexpressing genes related to lignan- and phenolic-compound biosynthesis.  相似文献   
50.
To establish the relationship between thyroid hormone and cyclic Adenosine monophosphate (cAMP) during lacertilian tail regeneration, cAMP phosphodiesterase, the hydrolytic enzyme of cAMP, was assayed in the tail regenerate, liver, and skeletal muscle of control (group A), chemically thyroidectomized (group B), and thyroidectomized and T4-replaced (group C) animals during various periods of tail regeneration. Enzyme activity was elevated in all three tissues of group B animals. Animals of group C showed an intermediate level of enzyme activity between controls (group A) and experimental animals (group B). These observations suggest a possible regulatory role of thyroxine in maintaining optimum levels of phosphodiesterase. The retardation in regeneration observable in the hypothyroid group of animals may be correlated with low levels of tissue cAMP. However, the operation of other influencing factors on phosphodiesterase during regeneration can be surmised from the observed tendency to exhibit similar patterns of phase-specific modulations in enzyme activity. Our observations are discussed in terms of phase-specific involvement of cAMP in regeneration, as well as its role in other metabolic aspects and the possible mode of indirect control exerted by thyroxine on lacertilian tail regeneration. © 1996 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号