首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1862篇
  免费   168篇
  国内免费   4篇
  2034篇
  2022年   18篇
  2021年   27篇
  2020年   21篇
  2019年   28篇
  2018年   37篇
  2017年   41篇
  2016年   51篇
  2015年   71篇
  2014年   71篇
  2013年   109篇
  2012年   126篇
  2011年   90篇
  2010年   92篇
  2009年   84篇
  2008年   102篇
  2007年   83篇
  2006年   64篇
  2005年   84篇
  2004年   66篇
  2003年   66篇
  2002年   56篇
  2001年   61篇
  2000年   59篇
  1999年   45篇
  1998年   35篇
  1997年   31篇
  1996年   19篇
  1995年   21篇
  1994年   9篇
  1993年   16篇
  1992年   25篇
  1991年   26篇
  1990年   14篇
  1989年   13篇
  1988年   23篇
  1987年   11篇
  1986年   23篇
  1985年   15篇
  1984年   18篇
  1983年   14篇
  1982年   29篇
  1981年   12篇
  1979年   7篇
  1977年   12篇
  1976年   8篇
  1975年   13篇
  1974年   10篇
  1973年   10篇
  1972年   13篇
  1971年   13篇
排序方式: 共有2034条查询结果,搜索用时 15 毫秒
991.
992.
993.
Clock gene expression was associated with different components of metabolic syndrome (MS) in human adipose tissue. However, no study has been done to compare the expression of clock genes in visceral adipose tissue (VAT) from lean and obese subjects and its clinical implications. Therefore, we studied in lean and obese women the endogenous 24 h expression of clock genes in isolated adipocytes and its association with MS components. VAT was obtained from lean (BMI 21–25 kg/m2; n = 21) and morbidly obese women (BMI >40 kg/m2; n = 28). The 24 h pattern of clock genes was analyzed every 6 hours using RT-PCR. Correlation of clinical data was studied by Spearman analysis. The 24 h pattern of clock genes showed that obesity alters the expression of CLOCK, BMAL1, PER1, CRY2 and REV-ERB ALPHA in adipocytes with changes found in CRY2 and REV-ERB ALPHA throughout the 24 h period. The same results were confirmed in VAT and stromal cells (SC) showing an upregulation of CRY2 and REV-ERB ALPHA from obese women. A positive correlation was observed for REV-ERB ALPHA gene expression with BMI and waist circumference in the obese population. Expression of ROR ALPHA was correlated with HDL levels and CLOCK with LDL. Obese subjects with MS exhibited positive correlation in the PER2 gene with LDL cholesterol, whereas REV-ERB ALPHA was correlated with waist circumference. We identified CRY2 and REV-ERB ALPHA as the clock genes upregulated in obesity during the 24 h period and that REV-ERB ALPHA is an important gene associated with MS.  相似文献   
994.
The interaction among species can be influenced by neutral processes, in which more abundant species have high effect on the structure of interaction, or can be influenced by trait matching. Despite both variables (abundance and species traits) influencing the interaction of species in mutualistic networks, few studies showed their importance in antagonistic networks. Here, we posed the question: what are the main predictors of the liana–tree interactions: species abundance, biological traits or both? In a savanna woodland fragment in south‐eastern Brazil, we sampled lianas and trees in 1 ha, where we recorded the abundance, maximum height and bark roughness of tree species, as well as abundance, maximum diameter and climbing system of liana species. For each species, we calculated their contribution to nestedness (ni), which is a measure of network structure, and performed simple linear regressions between ni and abundance and species traits. Abundant species contribute more to ni than rare species, indicating that neutral processes affect interactions between lianas and trees, probably because lianas are opportunistic and climb trees in their neighbourhood. The only trait related to ni was tree height, which can indicate that light availability can have a considerable role on network structure between both growth forms. Therefore, the importance of species abundance and tree height can be related to opportunism of lianas on climbing the most suitable tree in their neighbourhood.  相似文献   
995.
Phosphoenolpyruvate carboxylase (PEPC) activity was detected in aleurone-endosperm extracts of barley (Hordeum vulgare) seeds during germination, and specific anti-sorghum (Sorghum bicolor) C4 PEPC polyclonal antibodies immunodecorated constitutive 103-kD and inducible 108-kD PEPC polypeptides in western analysis. The 103- and 108-kD polypeptides were radiolabeled in situ after imbibition for up to 1.5 d in 32P-labeled inorganic phosphate. In vitro phosphorylation by a Ca2+-independent PEPC protein kinase (PK) in crude extracts enhanced the enzyme''s velocity and decreased its sensitivity to l-malate at suboptimal pH and [PEP]. Isolated aleurone cell protoplasts contained both phosphorylated PEPC and a Ca2+-independent PEPC-PK that was partially purified by affinity chromatography on blue dextran-agarose. This PK activity was present in dry seeds, and PEPC phosphorylation in situ during imbibition was not affected by the cytosolic protein-synthesis inhibitor cycloheximide, by weak acids, or by various pharmacological reagents that had proven to be effective blockers of the light signal transduction chain and PEPC phosphorylation in C4 mesophyll protoplasts. These collective data support the hypothesis that this Ca2+-independent PEPC-PK was formed during maturation of barley seeds and that its presumed underlying signaling elements were no longer operative during germination.Higher-plant PEPC (EC 4.1.1.31) is subject to in vivo phosphorylation of a regulatory Ser located in the N-terminal domain of the protein. In vitro phosphorylation by a Ca2+-independent, low-molecular-mass (30–39 kD) PEPC-PK modulates PEPC regulation interactively by opposing metabolite effectors (e.g. allosteric activation by Glc-6-P and feedback inhibition by l-malate; Andreo et al., 1987), decreasing significantly the extent of malate inhibition of the leaf enzyme (Carter et al., 1991; Chollet et al., 1996; Vidal et al., 1996; Vidal and Chollet, 1997). These metabolites control the rate of phosphorylation of PEPC via an indirect target-protein effect (Wang and Chollet, 1993; Echevarría et al., 1994; Vidal and Chollet, 1997).Several lines of evidence support the view that this protein-Ser/Thr kinase is the physiologically relevant PEPC-PK (Li and Chollet, 1993; Chollet et al., 1996; Vidal et al., 1996; Vidal and Chollet, 1997). The presence and inducible nature of leaf PEPC-PK have been established further in various C3, C4, and CAM plant species (Chollet et al., 1996). In all cases, CHX proved to be a potent inhibitor of this up-regulation process so that apparent changes in the turnover rate of PEPC-PK itself or another, as yet unknown, protein factor were invoked to account for this observation (Carter et al., 1991; Jiao et al., 1991; Chollet et al., 1996). Consistent with this proposal are recent findings about PEPC-PK from leaves of C3, C4, and CAM plants that determined activity levels of the enzyme to depend on changes in the level of the corresponding translatable mRNA (Hartwell et al., 1996).Using a cellular approach we previously showed in sorghum (Sorghum bicolor) and hairy crabgrass (Digitaria sanguinalis) that PEPC-PK is up-regulated in C4 mesophyll cell protoplasts following illumination in the presence of a weak base (NH4Cl or methylamine; Pierre et al., 1992; Giglioli-Guivarc''h et al., 1996), with a time course (1–2 h) similar to that of the intact, illuminated sorghum (Bakrim et al., 1992) or maize leaf (Echevarría et al., 1990). This light- and weak-base-dependent process via a complex transduction chain is likely to involve sequentially an increase in pHc, inositol trisphosphate-gated Ca2+ channels of the tonoplast, an increase in cytosolic Ca2+, a Ca2+-dependent PK, and PEPC-PK.Considerably less is known about the up-regulation of PEPC-PK and PEPC phosphorylation in nongreen tissues. A sorghum root PEPC-PK purified on BDA was shown to phosphorylate in vitro both recombinant C4 PEPC and the root C3-like isoform, thereby decreasing the enzyme''s malate sensitivity (Pacquit et al., 1993). PEPC from soybean root nodules was phosphorylated in vitro and in vivo by an endogenous PK (Schuller and Werner, 1993; Zhang et al., 1995; Zhang and Chollet, 1997). A Ca2+-independent nodule PEPC-PK containing two active polypeptides (32–37 kD) catalyzed the incorporation of phosphate on a Ser residue of the target enzyme and was modulated by photosynthate transported from the shoots (Zhang and Chollet, 1997). Regulatory seryl phosphorylation of a heterotetrameric (α2β2) banana fruit PEPC by a copurifying, Ca2+-independent PEPC-PK was shown to occur in vitro (Law and Plaxton, 1997). Although phosphorylation was also detected in vivo and found to concern primarily the α-subunit, PEPC exists mainly in the dephosphorylated form in preclimacteric, climacteric, and postclimacteric fruit.In a previous study we showed that PEPC undergoes regulatory phosphorylation in aleurone-endosperm tissue during germination of wheat seeds (Osuna et al., 1996). Here we report on PEPC and the requisite PEPC-PK in germinating barley (Hordeum vulgare) seeds. PEPC was highly phosphorylated by a Ca2+-independent Ser/Thr PEPC-PK similar to that found in other plant systems studied previously (Chollet et al., 1996); however, the PK was already present in the dry seed and its activity did not require protein synthesis during imbibition.  相似文献   
996.
Fatty acid acylation of platelet proteins was studied by measuring incorporation of [3H]palmitate and [3H]myristate after incubation at 37 degrees C for 4 h. About ten major radiolabeled proteins were detected after SDS-polyacrylamide gel electrophoresis and fluorography, for both fatty acids. Cleavage by hydroxylamine treatment indicated an ester bond of either palmitate or myristate to these proteins. Nevertheless, a single 50 kDa peptide was specifically modified by an amide-linked myristate. The functions of acylated proteins in platelets are still unknown, but their relation with DLPC-induced shape changes and vesicle shedding is excluded.  相似文献   
997.
Mycobacterium tuberculosis (Mtb) disrupts anti-microbial pathways of macrophages, cells that normally kill bacteria. Over 40 years ago, D''Arcy Hart showed that Mtb avoids delivery to lysosomes, but the molecular mechanisms that allow Mtb to elude lysosomal degradation are poorly understood. Specialized secretion systems are often used by bacterial pathogens to translocate effectors that target the host, and Mtb encodes type VII secretion systems (TSSSs) that enable mycobacteria to secrete proteins across their complex cell envelope; however, their cellular targets are unknown. Here, we describe a systematic strategy to identify bacterial virulence factors by looking for interactions between the Mtb secretome and host proteins using a high throughput, high stringency, yeast two-hybrid (Y2H) platform. Using this approach we identified an interaction between EsxH, which is secreted by the Esx-3 TSSS, and human hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). ESCRT has a well-described role in directing proteins destined for lysosomal degradation into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs), ensuring degradation of the sorted cargo upon MVB-lysosome fusion. Here, we show that ESCRT is required to deliver Mtb to the lysosome and to restrict intracellular bacterial growth. Further, EsxH, in complex with EsxG, disrupts ESCRT function and impairs phagosome maturation. Thus, we demonstrate a role for a TSSS and the host ESCRT machinery in one of the central features of tuberculosis pathogenesis.  相似文献   
998.
Fève B  Bastard JP  Vidal H 《Comptes rendus biologies》2006,329(8):587-97; discussion 653-5
White adipose tissue is the main site of energy storage, but it is now recognized as an active participant in regulating physiologic and pathologic processes including immunity and inflammation. It has an endocrine function by secreting at least two main hormones, leptin and adiponectin. It can secrete other products, named adipokines, including cytokines and chemokines, involved in inflammation process. The release of adipokines by either adipocytes or adipose tissue infiltrated macrophages lead to a chronic sub-inflammatory state that could play a central role in cardiovascular complications linked to obesity and insulin resistance, a risk factor to develop type-2 diabetes.  相似文献   
999.
To determine the specificity and efficacy of [(3)H]ouabain binding as a quantitative measure of the Na(+) pump (Na(+), K(+)-ATPase) and as a marker for the localization of pumps involved in transepithelial Na(+)-transport, we analyzed the interaction of [(3)H]ouabain with its receptor in pig kidney epithelial (LLC-PK(1)) cells. When these epithelial cells are depleted of Na(+) and exposed to 2 muM [(3)H]ouabain in a Na(+)-free medium, binding is reduced by 90 percent. When depleted of K(+) and incubated in a K(+)- free medium, the ouabain binding rate is increase compared with that measured at 5 mM. This increase is only demonstable when Na(+) is present. The increased rate could be attributed to the predominance of the Na(+)-stimulated phosphorylated form of the pump, as K(+) is not readily available to stimulate dephosphorylation. However, some binding in the K(+)-free medium is attributable to pump turnover (and therefore, recycling of K(+)), because analysis of K(+)-washout kinetics demonstrated that addition of 2 muM ouabain to K(+)-depleted cells increased the rate of K(+) loss. These results indicate that in intact epithelial cells, unlike isolated membrane preparations, the most favorable condition for supporting ouabain binding occurs when the Na(+), K(+)-ATPase is operating in the Na(+)-pump mode or is phosphorylated in the presence of Na(+). When LLC-PK(1) cells were exposed to ouabain at 4 degrees C, binding was reduced by 97 percent. Upon rewarming, the rate of binding was greater than that obtained on cells kept at a constant 37 degrees C. However, even at this accelerated rate, the time to reach equilibrium was beyond what is required for cells, swollen by exposure to cold, to recover normal volume. Thus, results from studies that have attempted to use ouabain to eliminate the contribution of the conventional Na(+) pump to volume recovery must be reevaluated if the exposure to ouabain was done in the cold or under conditions in which the Na(+) pump is not operating.  相似文献   
1000.
Y-family DNA polymerases are believed to facilitate the replicative bypass of damaged DNA in a process commonly referred to as translesion synthesis. With the exception of DNA polymerase eta (poleta), which is defective in humans with the Xeroderma pigmentosum variant (XP-V) phenotype, little is known about the cellular function(s) of the remaining human Y-family DNA polymerases. We report here that an interaction between human DNA polymerase iota (poliota) and the proliferating cell nuclear antigen (PCNA) stimulates the processivity of poliota in a template-dependent manner in vitro. Mutations in one of the putative PCNA-binding motifs (PIP box) of poliota or the interdomain connector loop of PCNA diminish the binding between poliota and PCNA and concomitantly reduce PCNA-dependent stimulation of poliota activity. Furthermore, although retaining its capacity to interact with poleta in vivo, the poliota-PIP box mutant fails to accumulate in replication foci. Thus, PCNA, acting as both a scaffold and a modulator of the different activities involved in replication, appears to recruit and coordinate replicative and translesion DNA synthesis polymerases to ensure genome integrity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号