首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   716篇
  免费   74篇
  2023年   5篇
  2022年   17篇
  2021年   31篇
  2020年   29篇
  2019年   32篇
  2018年   32篇
  2017年   29篇
  2016年   26篇
  2015年   38篇
  2014年   49篇
  2013年   55篇
  2012年   67篇
  2011年   58篇
  2010年   31篇
  2009年   24篇
  2008年   26篇
  2007年   28篇
  2006年   28篇
  2005年   24篇
  2004年   22篇
  2003年   13篇
  2002年   21篇
  2001年   5篇
  2000年   7篇
  1999年   9篇
  1998年   4篇
  1997年   9篇
  1996年   7篇
  1995年   2篇
  1993年   3篇
  1992年   8篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1983年   5篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1976年   2篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1963年   1篇
  1943年   1篇
  1942年   1篇
排序方式: 共有790条查询结果,搜索用时 15 毫秒
101.
102.
103.
Complex anatomical and physiological structure of an excitable tissue (e.g., cardiac tissue) in the body can represent different electrical activities through normal or abnormal behavior. Abnormalities of the excitable tissue coming from different biological reasons can lead to formation of some defects. Such defects can cause some successive waves that may end up to some additional reorganizing beating behaviors like spiral waves or target waves. In this study, formation of defects and the resulting emitted waves in an excitable tissue are investigated. We have considered a square array network of neurons with nearest-neighbor connections to describe the excitable tissue. Fundamentally, electrophysiological properties of ion currents in the body are responsible for exhibition of electrical spatiotemporal patterns. More precisely, fluctuation of accumulated ions inside and outside of cell causes variable electrical and magnetic field. Considering undeniable mutual effects of electrical field and magnetic field, we have proposed the new Hindmarsh–Rose (HR) neuronal model for the local dynamics of each individual neuron in the network. In this new neuronal model, the influence of magnetic flow on membrane potential is defined. This improved model holds more bifurcation parameters. Moreover, the dynamical behavior of the tissue is investigated in different states of quiescent, spiking, bursting and even chaotic state. The resulting spatiotemporal patterns are represented and the time series of some sampled neurons are displayed, as well.  相似文献   
104.
In the present research, the binding properties of diazinon (DZN), as an organophosphorus herbicide, to human serum albumin (HSA) were investigated using combination of spectroscopic, electrochemistry, and molecular modeling techniques. Changes in the UV–Vis and FT-IR spectra were observed upon ligand binding along with a significant degree of tryptophan fluorescence quenching on complex formation. The obtained results from spectroscopic and electrochemistry experiments along with the computational studies suggest that DZN binds to residues located in subdomains IIA of HSA with binding constant about 1410.9 M?1 at 300 K. From the thermodynamic parameters calculated according to the van’t Hoff equation, the enthalpy change ΔH° and entropy change ΔS° were found to be ?16.695 and 0.116 KJ/mol K, respectively. The primary binding pattern is determined by hydrophobic interaction and hydrogen binding occurring in so-called site I of HSA. DZN could slightly alter the secondary structure of HSA. All of experimental results are supported by computational techniques such as docking and molecular dynamics simulation using a HSA crystal model.  相似文献   
105.
106.
107.
Kumar A  Tyagi NK  Goyal P  Pandey D  Siess W  Kinne RK 《Biochemistry》2007,46(10):2758-2766
Although there is no evidence of significant Na-independent glucose flux in tissues naturally expressing SGLT1, previous kinetic and biophysical studies suggest that sodium/d-glucose cotransporter 1 (hSGLT1) can facilitate sodium-independent d-glucose transport and may contain more than one sugar binding site. In this work, we analyze the kinetic properties and conformational states of isolated hSGLT1 reconstituted in liposomes by transport and fluorescence studies in the absence of sodium. In the transport studies with hSGLT1, significant sodium-independent phlorizin inhibitable alpha-methyl d-glucopyranoside (alpha-MDG) uptake was observed which amounted to approximately 20% of the uptake observed in the presence of a sodium gradient. The apparent affinity constant for alpha-MDG was thereby 3.4 +/- 0.5 mM, a value approximately 10-fold higher than that in the presence of sodium. In the absence of sodium, various sugars significantly decreased the intrinsic Trp fluorescence of hSGLT1 in proteoliposomes exhibiting the following sequence of affinities: alpha-MDG > d-glucose approximately d-galactose > 6-deoxy-d-glucose > 2-deoxy-d-glucose > d-allose. Furthermore, significant protection effects of d-glucose or phlorizin against potassium iodide, acrylamide, or trichloroethanol quenching were observed. To locate the Trps involved in this reaction, we generated mutants in which all Trps were sequentially substituted with Phe. None of the replacements significantly affected sodium-dependent uptake. Uptake in the absence of sodium and typical fluorescence changes depended, however, on the presence of Trp at position 561. This Trp residue is conserved in all known SGLT1 forms (except Vibrio parahaemolyticus SGLT) and all SGLT isoforms in humans (except hSGLT3). If all these data are taken into consideration, it seems that Trp-561 in hSGLT1 forms part of a low-affinity sodium-independent binding and/or translocation site for d-glucose. The rate of sodium-independent translocation via hSGLT1 seems, however, to be tightly regulated in the intact cell by yet unknown factors.  相似文献   
108.
109.
We have designed this study to determine various kinetic parameters of camel retinal membrane‐bound acetylcholinesterase (AChE; EC 3.1.1.7) inhibition by carbamate insecticide lannate [methyl N‐{{(methylamino)carbonyl}oxy} ethanimidothioate]. All these kinetic constants were derived by simple graphical methods. The value of kinetic parameters was estimated as follows: 0.061 (μM)−1, 1.14 (μM)−1, 0.216 μM, 0.016 min−1, 0.0741 (μM min)−1, 0.746 μM, and 4.42 μM for velocity constant (Kv), new inhibition constant (Knic), dissociation constant (Kd), carbamylation rate constant (k2c), overall carbamylation rate constant (k′2 ), 50% inhibition constant (KI50), and 99% inhibition constant (KI99), respectively. These unique methods may be used to estimate such kinetic parameters for time‐dependent inhibition of enzymes by variety of chemicals, insecticides, herbicides, and drugs. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 41–46, 1999  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号